Homework 12

Due Tuesday, November 17, 11:59 PM

Definitions

State:
(i) The definition of a (continuous) path in a space X .
(ii) The definition of path-connectedness.
(iii) The definition of $\pi_{0}(X)$.
(iv) The Invariance of Domain theorem.
(v) The definition of connectedness.

Proof(s)

(a) Prove that if X and Y are homeomorphic, then there is a bijection between $\pi_{0}(X)$ and $\pi_{0}(Y)$.
(b) Exhibit an example showing that the converse is false.

Canvas True/False Questions:

Indicate whether each of the following statements is true or false:

1. If X is path-connected, then $\pi_{0}(X)$ consists of a single point.
2. If $\pi_{0}(X)$ consists of a single point, then X is path-connected.
3. Let $A \subset \mathbb{R}^{2}$ be a finite subset. Then $\mathbb{R}^{2} \backslash A$ is path-connected.
4. Let $A \subset \mathbb{R}$ be a finite subset containing n elements. Then $\pi_{0}(\mathbb{R} \backslash A)$ consists of $n+1$ elements.
5. Suppose $n \geq 1$ and let $A=S^{n-1} \subset \mathbb{R}^{n}$. Then $\mathbb{R}^{n} \backslash A$ is path-connected.
6. Suppose $n \geq 2$ and let $A=D^{n} \subset \mathbb{R}^{n}$. Then $\mathbb{R}^{n} \backslash A$ is path-connected.
