Homework 13

Due Tuesday, November 24, 11:59 PM

Definitions

(a) State:

- (i) The definition of one-point compactification of a space X.
- (ii) The definition of closure of a subset of a topological space X.
- (iii) The definition of interior of a subset of a topological space X.
- (iv) The definition of what it means for a subset of a topological space X to be dense.
- (v) The definition of a base (or basis) of a topology.

Proof(s)

Prove that S^n is homeomorphic to the one-point compactification of \mathbb{R}^n .

Canvas True/False Questions:

Indicate whether each of the following statements is true or false:

- 1. If X is compact and Hausdorff and connected, then X^+ is connected.
- 2. If X is not Hausdorff, then X^+ is Hausdorff.
- 3. \mathbb{Q} is a dense subset of \mathbb{R} when \mathbb{R} is given the standard topology.
- 4. \mathbb{Q} is a dense subset of \mathbb{R} when \mathbb{R} is given the discrete topology.
- 5. \mathbb{Q} , given the subspace topology inherited from \mathbb{R} with the standard topology, is connected.
- 6. \mathbb{Q} , given the subspace topology inherited from \mathbb{R} with the standard topology, is path-connected.