
Lecture 5

Open sets in Rn

5.1 Definitions

Let’s talk a little about the idea of “definitions” in mathematics.
First, mammals. Give me some examples of mammals. You might say

human, dog, cat, kangaroo. Okay, not let me ask: What exactly is a mammal?
Can you give me precise criteria of what a mammal is, so that if I give
your criteria to a computer, a computer could always and correctly identify
something as a mammal given enough information?

In real life, we often operate by having some grasp of a word, without
knowing precisely what it means. And, in the example of “mammal,” we
rarely try to create of imagine a completely new kind of mammal just to
illustrate what the criteria provide for. But why did we even come up with
the idea of a mammal? Probably because we noticed that there are certain
animals that share many similarities (hair, mammary glands, non-egg birth)
and so it was convenient to have a word for that.

Believe it or not, most definitions in math arise in a similar way. We often
see a lot of examples around us, and we notice a commonality, and we decide
to codify these examples under a single umbrella term. But, unlike biology,
once the umbrella term and its criteria are delineated, we can imagine all
kinds of crazy things so long as we can simply show that they fit the criteria.
This is the power of math and of imagination.

In most math classes and math lectures, “definitions” are introduced first,
and examples come later. Imagine if somebody began a biology lecture by
saying “A rhodophyte is an aquatic eukaryotic alga with reddish coloring,”
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42 LECTURE 5. OPEN SETS IN RN

but gave no examples, it may be hard for you to imagine what a rhodophyte
is. Wouldn’t you love a picture, or some examples, of rhodophytes?

In math class, you can also rest assured that the definitions we give are
actually useful, just like it is incredibly useful to know about the idea that
a classification of animal called “mammal” exists. But, unlike certain terms
in biology, we cannot just immediately “see” an example of a math term.
In fact, we often have to do some work to verify that certain things fit a
mathematical definition. It is as though all biology definitions were based
on traits that are only verifiable by intricate dissections, so that to verify a
species is a mammal would necessitate time-intensive procedures.

5.2 Open subsets as a union of open balls
Let’s recall the following:

Definition 5.2.1. Let x œ Rn and choose a real number r > 0. Then the
open ball of radius r centered at x is

Ball(x, r) := {y œ Rn |
nÿ

i=1
(yi ≠ xi)2 < r2.}

In words, Ball(x, r) is the set of all points y that have distance (strictly)
less than r from x. Make sure you understand the truth of the previous
sentence.

The following is a concept you will have to know very well in this class:

Definition 5.2.2 (Open subsets of Rn). A subset V µ Rn is called open if
A can be written as a union of open balls.

First, you should have a million questions. But let me just give a rephras-
ing of the definition: V µ Rn is called open if there exists a set A and a
function A æ P(Rn) such that

1. U– is an open ball for every – œ A, and

2. V = t
–œA U–.

Warning 5.2.3. The n matters in the definition of open. That is, V µ Rn

is open as a subset of Rn. Openness is not an intrinsic property of the set V ,
and it matters that you are considering it as a subset of Rn.
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5.3 The empty set is open
I’ll begin with the most technical example, just so you’re aware:

Example 5.3.1 (The empty set). The empty set is an open subset of Rn!
You might think this is ludicrous, because it doesn’t look like the union of
any open balls. But, alas, consider the following. Let A = ÿ, and consider
the function

A æ P(Rn).
Note that I don’t have to say anything about this function—there is a unique
function from the empty set to any set. (This is a technicality, but also a
wonderful fact.) Then

€

–œA

U– = {x œ Rn | There is some – œ A such that x œ U–}.

But there is no – œ A, so there are no x that fit the criteria above. In other
words, this union contains no elements. That is, this union is the empty
subset of Rn.

If you did not like the above example, just take it as a given fact. The
empty set is an open subset of Rn.

Example 5.3.2 (Rn). Take a moment to show that Rn is an open subset of
Rn.

5.3.1 Some proofs that Rn is an open subset of Rn

Proof. Here is a potential proof: Let A = Rn be the set of all elements of
Rn. Choose your favorite number, say 3. Then define

A æ P(Rn), – ‘æ Ball(–, 3) =: U–.

Then €

–œA

U–

is the set of all x œ Rn such that x œ U– for some –. Well, for any x œ Rn,
let x = –; we see that x œ U– (because any point is certain within 3 units
of itself). Thus Rn is a subset of this union; on the other hand, the union of
subsets of Rn is always a subset of Rn. So this shows that Rn is equal to this
union of open balls.
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This is of course not the only proof.

Proof. You could have chosen A to be the set of all n-tuplies – = (x1, . . . , xn)
such that each xi is a rational number. Then

A æ P(Rn), – ‘æ Ball(–, 3)

would also exhibit Rn as a union of open balls. (This is because any y œ Rn

is close enough to some x whose coordinates are rational.)

Proof. Another proof is as follows: Let A = {1, 2, 3, . . .} be the set of positive
integers. We’ll write n œ A (instead of –). Choose a function as follows:

A æ P(Rn), Un = Ball(0, n).

Then t
n>0 Un is all of Rn.

Remark 5.3.3. As you can see, there are many di�erent ways to prove that
Rn is open. The proofs always come down to finding a particular collection
of open balls, and then proving that the union of that collection is Rn itself.

5.4 Other examples of open subsets
Example 5.4.1 (Open balls are open). Let U = Ball(x, r) µ Rn be some
open ball of radius r centered at x œ Rn. This is an open subset of Rn. (And
not just because “open ball” is in the name—we have to prove that it’s open
as in Definition 5.2.2.)

Well, choose A = {ú} to be a set with one element, and let

A æ P(Rn), ú ‘æ Ball(x, r).

Then t
–œA U– = Ball(x, r). That is, any open ball is a union of a single open

ball, and in particular, a union of open balls.

Example 5.4.2. Let n = 2, and let x = (3, 2), y = (3, 3), z = (≠2, 1) be
three points in R2. Consider the union

V = Ball(x, 1)
€

Ball(z, 2)
€

Ball(y, 1).

Because this is a union of (three) open balls, this is an open subset of R2.
V is pictured in Figure 5.2. In fact, you can make all kinds of drawings by
taking unions of open balls. Try picking a few random points for x, and a
few random radii r, and drawing each Ball(x, r) (and their union).



5.4. OTHER EXAMPLES OF OPEN SUBSETS 45

x

r

Figure 5.1: A picture of Ball(x, r) µ R2. (The dashed boundary means that
the points of distance exactly r are not part of Ball(x, r).)

Example 5.4.3. As the example of R2 illustrates, you can make infinitely
large regions by taking unions of (infinitely many) open balls. Here is another
such example. Let V = R2 \ {(x1, 0)}. That is, let V be the set obtained by
removing the x-axis from the xy-plane. This is drawn in Figure 5.3.

I must prove for you that V is open. Well, let A µ R2 ◊ R be the set of
those pairs (x, r) such that (i) The coordinate x2 of x is not zero, and (ii)
r < |x2|. Define

U(x,r) = Ball(x, r).
I leave it as an exercise to you that t

–œA U– = V .

Example 5.4.4. You might associate open balls with “round”-looking shapes.
(After all, the boundary of a ball looks like a sphere, just scaled up or scaled
down.) But you can make more “jagged-looking” shapes—really, the jagged-
ness is only an appearance, as the jagged parts are not part of the open set
V we’re about to make.

For example, we could have

V = {(x1, x2) | |x1| < 2, |x2| < 3} µ R2.

And
W = {(x1, x2) | x2 > |x1|}.
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Figure 5.2: An image of the set Ball(x, 1) t Ball(z, 2) t Ball(y, 1). Note again
the dashed boundary.

V and W are both open subsets of R2. Can you write them as a union of
open balls?
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Figure 5.3: An image of the set R2 \ {(x1, 0)}.
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5.5 Subsets that are not open
Whenever you’re given a new definition, you should think about things that
do not fit the definition. So for example, are there subsets of Rn that are not
open?

5.5.1 Using cardinality/size
In your previous proof class, you presumably learned about cardinality. Roughly
speaking, the cardinality of a set is the size of the set. The big conceptual
leap one has to make is the realization that there are many, many infinite
cardinalities. For example, the set of integers is countably infinite1, while the
set of real numbers is uncountably infinite. And, as you showed in homework,
P(R) is a set that is not in bijection with R (and in fact, has strictly larger
cardinality than R) so P(R) has a cardinality even larger than that of R. Its
size is another example of an uncountable cardinal.

Proposition 5.5.1. Let n Ø 1. Then for any x œ Rn and any r > 0,
Ball(x, r) µ Rn is uncountably large.

Proof. For n = 1, this is because the open interval (x≠r, x+r) is uncountably
large. (This open interval is in bijection with R itself, for example.)

For n Ø 2, let x = (x1, . . . , xn). Then the interval (x1 ≠ r, x1 + r) injects
into Ball(x, r) by sending

y ‘æ (y, x2, . . . , xn) œ Ball(x, r) µ Rn

Since Ball(x, r) receives an injection from an uncountable set, it is at least
uncountably large.

Corollary 5.5.2. If V µ Rn is a non-empty, open subset, then V has un-
countably many elements.

Proof. Since V is open, it can be written as a union of open balls. Because V
is non-empty, this union must consist of at least one open ball, say Ball(x, r)
for some x, œ Rn, r > 0. But Ball(x, r) is uncountable. Because V contains
an uncountably large subset, V itself must be uncountably large.

Thus, we conclude:
1
This means, by definition, that there is a bijection with the set of natural numbers
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Corollary 5.5.3. If A µ Rn is any non-empty subset with countably many
elements, then A is not open.

Example 5.5.4 (A single-element subset is not open). Assume n Ø 1 (note
we exclude n = 0) and let x œ Rn. Consider the set B = {x} µ Rn. (B has
only one element, called x.) Then B is finite, and in particular countable, so
B could not be open.

Indeed, any finite subset of Rn, for n Ø 1, is not open.

Example 5.5.5. Because Q is countable, Q is not an open subset of R.

5.6 Open subset have “wiggle room” for each
element

There are also plenty of uncountable sets that are not open. For example,
the set of irrational numbers is a subset of R that is not open. The following
lemma will help us think about what open subsets look like (see Figure 5.4):

Lemma 5.6.1. Let Ball(x, r) µ Rn be an open ball, and let xÕ œ Ball(x, r).
Then there exists an rÕ > 0 so that Ball(xÕ, rÕ) µ Ball(x, r).

x
r

x
r

xÕ

x
r

xÕ rÕ

Figure 5.4: Given a point xÕ œ Ball(x, r), we can find an rÕ so that
Ball(xÕ, rÕ) µ Ball(x, r).

One use of this lemma is to show that we can “re-center” an open ball, so
that instead of having to deal with an open ball with center x, we can think
about open balls centered at xÕ, which may be psychologically easier to deal
with.

Before we prove this Lemma, let’s see one use of it:
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Theorem 5.6.2. Let V µ Rn. The following are equivalent:

1. V is open. (See Definition 5.2.2.)

2. For every x œ V , there is a real number r > 0 so that Ball(x, r) µ V .

In other words, V µ Rn is open if and only if every point in V has some
“wiggle room” inside of V —any point x œ V can rest assured that there is
some finite radius for which every point within that radius is still contained
in V .

Proof of Theorem 5.6.2, assuming Lemma 5.6.1. (1) =∆ (2). V is open,
so V may be expressed as a union t

–œA U– for some collection of open balls
U– = Ball(x–, r–). So if x œ V , by definition is union, there exists some – so
that

x œ Ball(x–, r–).
By Lemma 5.6.1, we can find some rÕ so that Ball(x, rÕ) µ Ball(x–, r–). By
transitivity of inclusion (i.e., of the subset relation) we conclude

Ball(x, rÕ) µ V.

(2) =∆ (1). Let A = V , and for every – = x œ A, let rx denote some posi-
tive real number for which Ball(x, rx) µ V . (Such an rx exists by assumption
(2).) I claim that

V =
€

xœA

Ball(x, rx).

Since each Ball(x, rx) is a subset of V , clearly this union is a subset of V . On
the other hand, V is a subset of the union, as x œ V =∆ x œ Ball(x, rx) µt

xœA Ball(x, rx). This proves the claim.

Now let’s prove the Lemma.

Proof of Lemma 5.6.1. Let xÕ œ Ball(x, r). Let d(x, xÕ) denote the distance
between x and xÕ. We know that d(x, xÕ) < r (because xÕ œ Ball(x, r)).

Then define rÕ = r≠d(x, xÕ). This is a positive number because d(x, xÕ) <
r. Moreoever, if some point y is in Ball(xÕ, rÕ), then I claim that y is also in
Ball(x, r).

In R, or in R2, this follows from the triangle inequality. Remember that
the triangle inequality tells us

d(x, xÕ) + d(xÕ, y) Ø d(x, y).
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Well, we know that d(x, xÕ) < r and d(xÕ, y) < rÕ = d(x, xÕ) ≠ r, so

d(x, xÕ) + d(xÕ, y) < d(x, xÕ) + rÕ = d(x, xÕ) + r ≠ d(x, xÕ) = r.

That is,
r > d(x, y).

Hence y œ Ball(x, r) as well. This shows that Ball(xÕ, rÕ) µ Ball(x, r).
In Rn, the triangle inequality still holds. To see this, given three points

x, xÕ, y œ Rn, consider any plane that contains x, xÕ, y. (If each of x, xÕ, y are
distinct, there is a unique such plane). Since the plane is a copy of R2 with
the same notion of distance between points as R2 has (as determined by the
Pythagorean theorem), the triangle inequality still holds on this plane, and
hence in Rn.

5.7 The take-away
The main things you should take away from this lecture are:

(a) Theorem 5.6.2, which tells you that subset of Rn is open if and only
if every point of the subset has some wiggle room. (That is, for every
x œ V , there is some open ball centered around x that is contained inside
V .)

(b) Not every subset of Rn is open. (For example, finite subsets, and more
generally, countable subsets, are not open.)

(c) The proof Lemma 5.6.1 (and hence Theorem 5.6.2) depended on the
triangle inequality.


