
Lecture 10

Compactness, II. Heine-Borel
theorem.

Last time we learned about covers, open covers, and subcovers. After seeing
examples, we culminated with the definition of compactness.

We saw that finite spaces are compact. That posets with minimal ele-
ments are compact, and (without proof) that [0, 1] µ R is compact when
equipped with the subspace topology.

We saw that Rn is not compact.

10.1 A little review
Proposition 10.1.1. If X and Y are homeomorphic, then X is compact if
and only if Y is compact.

A proof of this is a ri� on Proposition 9.4.4 from the previous lecture
notes, so is omitted here.

Proposition 10.1.2. Let a, b be real numbers such that a < b. Then the
interval [a, b] is homeomorphic to the interval [0, 1]. (When both are given
the subspace topology inherited from R.)

The proof of the above proposition was contained in Corollary 9.6.2 from
last time’s lecture notes.

Combining these two propositions, we conclude that any interval of the
form [a, b] is compact.
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10.2 You can pull back open covers

Also, I mentioned in class, but not in the notes, the following fact. You may
use this freely:

Proposition 10.2.1. Let f : X æ Y be a continuous function, and let V be
an open cover of Y . Define

U := {U µ X | U = f≠1(V ) for some V œ V.

Then U is an open cover of X.

The math lingo for this proposition is that open covers “pull back.” We
call U the pull-back of V. I’ll give a proof here, though you should practice
proving it on your own:

Proof. To show U is an open cover, we must show that it is a cover, and that
every element of U is open.

U is a cover. We must show that every x œ X is an element of some
U œ U. Given x, consider the point f(x) œ Y . We know that V is a cover of
Y , so there exists some V œ V for which f(x) œ V . In particular, x œ f≠1(V )
by definition of preimage.

On the other hand, U = f≠1(V ) is an element of U by definition of U. So
x œ U , and we are finished with this claim.

U is an open cover. We must show that every U œ U is open. Well,
U œ U if and only if U = f≠1(V ) for some V œ V (by definition of U).
And any V œ V is known to be open (because V is assumed to be an open
cover). Because f is continuous, the pre-image of any o pen subset is open—
in particular, U = f≠1(V ) is open.

A special example of this is when A is a subset of X, and iA : A æ X
is the inclusion function. Then any open cover of the big space X “pulls
back” to an open cover of A. In this case, i≠1

A (V ) has a particular simple
interpretation, as

i≠1
A (V ) = A fl V.
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10.3 The Heine-Borel Theorem
Let’s keep building up our examples of compact spaces. There’s a theorem
called the Heine-Borel theorem that actually tells us exactly all the subsets
of Rn that are compact (with respect to the subspace topology).

To state the theorem succinctly, we’ll want to learn another term.

Definition 10.3.1. Let A µ Rn. We say that A is bounded if there exists
some positive real number r > 0 such that

A µ Ball(0, r).

In other words, there is some big number r so that every point of A is at
most r units away from A.

Equivalently, A is called bounded if there is some r > 0 such that, for
every a œ A, we have that dist(0, a)—the distance from the origin to a—is
less than r.

Remark 10.3.2 (Bounded sequences). In analysis, you may have heard
about “bounded” sequences. This is a similar use of the word bounded. A
sequence a1, a2, . . . is called bounded if there is some r > 0 such that for
every i, ai œ Ball(0, r).

In real analysis, you also hear about sequences being bounded above or
bounded below. We won’t use these notions as much in this course. Regard-
less, I’ll tell you what these mean. A sequence a1, a2, . . . is bounded above if
there is some real number t such that, for every i, ai < t.

Likewise, a sequence a1, a2, . . . is bounded below if there is some real num-
ber s such that, for every i, ai > s.

Given a sequence a1, a2, . . ., the following are equivalent:

(i) The sequence is bounded.

(ii) The sequence is bounded above and bounded below.

I promise you can prove the equivalence of these two statements on your
own. But now, we will ignore the notion of boundedness for sequence, and
concentrate on the notion of boundedness in Definition 10.3.1.

Now, it turns out we can completely describe which subsets of Rn are
compact:
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Theorem 10.3.3 (Heine-Borel theorem). Let A be a subset of Rn.
Then A is compact if and only if A is both closed and bounded.

Remark 10.3.4. Note that being closed and bounded are properties of A
as a subset of Rn. When we endow this subset with the subspace topology
inherited from Rn, we may make sense of what it means for A to be compact.
And that is what we mean.

So, put in a more wordy fashion, the Heine-Borel theorem says: A, with
the subspace topology, is compact if and only if A is closed and bounded as
a subset of Rn.

We won’t prove the Heine-Borel theorem today. But you may use it freely
from now on.

To make good use of the Heine-Borel theorem, we’ll want tools to decide
when a subset of Rn is closed, and when it is bounded.

The homework due on Tuesday will have you determine whether certain
subsets of Rn are closed, are bounded, both, or neither.

Because it’s usually straightforward to decide whether a subset of Rn is
bounded or not (you just need to determine whether elements in that subset
can be arbitrarily far away from the origin) we’ll focus on a study of closed
subsets of Rn.

10.4 Closed subsets
Throughout this section, we’re going to assume we have placed the standard
topology on Rn.

10.4.1 Some easy closed subsets of Rn

By definition, a subset of Rn is closed if and only if its complement is open.

Example 10.4.1. Let A = {x œ Rn | dist(0, x) Ø 5}. That is, this is the set
of points that are distance 5 or greater from the origin.

Then A is closed. This is because the complement is an open ball of
radius 5 centered at the origin—and open balls are certainly open.

Example 10.4.2. Let A = {x œ R2 | x2 = 0}. This is otherwise known as
the x2-axis. Then the complement of A is open, as we saw in a previous
lecture note. So A is closed.
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By their very definition, closed subsets often require us to demonstrate
something about complements of sets. So most proofs involving closed sub-
sets will involve some ingredient of complements; so you will want to be fluent
with computing complements.

10.4.2 Some closed subsets of R
And we can also find some closed subsets of R straightforwardly:

Proposition 10.4.3. The following are all closed subsets of R:

1. A set consisting of a single point.

2. For any real number a, the intervals [a, Œ) and (≠Œ, a].

Proof. Choose a point x œ Rn. We must show that A = {x} is closed.
There are two ways to see this. Any sequence a1, a2, . . . ,in A is a “constant”
sequence, and hence converges to x (which is in A). Thus A satisfies the
“convergent sequence” criterion of closedness you proved in homework.

Another way to see this: AC is equal to R \ {x}. This can be written as
a union of open intervals of finite radius, so is open.

As for [a, Œ), let A denote the collection of all pairs (x, r) œ R ◊ R0 so
that the intersection of the open interval (x ≠ r, x + r) and [a, Œ) is empty.
Letting U(x,r) be the open ball of radius r about x—also known as the open
interval (x ≠ r, x + r)—we see that the complement of [a, Œ) is the union

€

(x,r)œA

Ball(x, r).

So [a, Œ) has open complement. The proof for (≠Œ, a] is nearly identical.

10.4.3 Ways to make new closed subsets
Now that we have some simpleton collections of closed subsets (of R and of
Rn) let’s see if we can make some more sophisticated ones.

As I mentioned before, because the definition of closedness involves com-
plements, so will many proofs. The above properties are a straightforward
consequence of de Morgan’s laws, which are the most useful tools for un-
derstanding unions and intersections of complements. We will assume these
without proof:
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Proposition 10.4.4 (de Morgan’s laws). The complement of a union is
the intersection of the complements. And the union of complements is the
complement of the intersection.

In symbols, for any collection of sets {B–}–œA, we have that
Q

a
€

–œA

B–

R

b
C

=
‹

–œA

BC
– ,

€

–œA

BC
– =

Q

a
‹

–œA

B–

R

b
C

(ii) and (iii) below helps us make new closed subsets out of old ones:

Proposition 10.4.5. Let X be a topological space with topology T. Let K
be the collection of closed subsets of X (so that B œ K ≈∆ BC œ T).
Then the following hold:

(i) ÿ, X œ K.

(ii) K is closed under finite unions. That is, if B1, . . . , Bn are closed subsets
of X, then the union B1

t
B2 . . .

t
Bn is also a closed subset of X.

(iii) K is closed under arbitrary intersections. That is, if we have an arib-
trary collection {B–}–œA of closed subsets of X, then the intersectionu

–œA B– is also a closed subset of X.

(ii), in plain English, says the finite union of closed sets is closed. (iii)
says that the intersection of closed sets is closed. You see the similarity with
the axioms of a topology, except that the finiteness condition is swapped.

Proof of Proposition 10.4.5. (i). Because ÿ is open (by definition of topol-
ogy), and ÿC = X, X is closed. Likewise, because X is open (by definition
of topology) and XC = ÿ, we see that ÿ is closed. We’ve shown that X and
ÿ are elements of K.

(ii). Let B1, . . . , Bn be a finite collection of closed subsets. We must show
that B1

t
. . .

t
Bn is closed. In other words, we must show that (B1

t
. . .

t
Bn)C

is open. By de Morgan’s laws, we see
1
B1

€
. . .

€
Bn

2C
= BC

1
‹

. . .
‹

BC
n .

Since each Bi is closed by assumption, we know that each BC
i is open. Thus

the above is an intersection of finitely many open subsets of X. Such an
intersection is known to be open by definition of topology.
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(iii). Finally, given an arbitrary collection {B–}–œA of closed sets, we must
show that the intersection is closed. That is, we must show that (u

–œA B–)C

is open. Well, by de Morgan’s laws,
Q

a
‹

–œA

B–

R

b
C

=
€

–œA

BC
– .

This last expression is a union of open subsets of X. By definition of topology,
such a union is open.

Example 10.4.6. We saw earlier that [a, Œ) µ R is closed. Likewise, we
know that (≠Œ, b] is closed. If we assume a > b, we see that the closed
interval [a, b] µ R is closed (because intersections of closed sets are closed).

Given some real numbers a1 < a2 < . . . < a2n, the union

[a1, a2]
€

[a3, a4]
€

. . .
€

[a2n≠1, a2n]

is closed, because a finite union of closed subsets is closed.
Likewise, if A µ R is a finite subset, then A is closed. This is because A

can be written as a finite union of singleton sets (i.e., sets with exactly one
element in them), and we saw that singleton sets are closed.

10.4.4 Making closed sets using preimages
The following is another method of creating closed subsets:

Proposition 10.4.7. Let X and Y be topological spaces and let f : X æ Y
be a continuous function. Then if B µ Y is closed, then f≠1(B) is closed.

Proof. If B µ Y is closed, then BC is open in Y . Because f is continuous,
f≠1(BC) is open in X. Moreover,

f≠1(BC) = {x œ X | f(x) œ BC}
= {x œ X | f(x) ”œ B}
= {x œ X | x ”œ f≠1(B)}
= (f≠1(B))C .

That is, the preimage of a complement is the complement of a preimage.
So f≠1(B) has an open complement. By definition, this means f≠1(B) is
closed.
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Remark 10.4.8. In fact, a function f : X æ Y is continuous if and only
if the preimage of any closed subset of Y is closed. So this is an equivalent
definition of continuity.

In other words, once you start having a wealth of closed subsets of some
space Y , and a wealth of continuous functions to Y , then we can start dis-
covering many closed subsets of X.

Theorem 10.4.9. Let X = Rn and Y = R, both with the standard topology.
Then any function that is a finite sum or product of the “standard” functions
from calculus—polynomials in each coordinate, sin or cosine, et cetera—is
continuous.

The proof of the above theorem isn’t so bad, but I’ll leave it as an extra
credit assignment for future weeks. It’s the kind of fact that many students
would rather assume, so they can move on with their lives. So I won’t dwell
on it.

You may use the above theorem freely from now on.

Example 10.4.10. The following are all continuous functions from Rn to R:

(a) (x1, x2, . . . , xn) ‘æ x1.

(b) (x1, x2, . . . , xn) ‘æ x2.

(c) For any i between 1 and n, the projection map (x1, x2, . . . , xn) ‘æ xi.

(d) (x1, x2, . . . , xn) ‘æ x2
1 + x2

2 + . . . + x2
n.

(e) (x1, x2, . . . , xn) ‘æ
Ò

x2
1 + x2

2 + . . . + x2
n. (This is known as the “distance

from the origin” function.)

(f) More generally, for any y œ Rn, the function x ‘æ dist(x, y) is continuous.
(This is the “distance from y” function.)

(g) f(x1, . . . , x6) = sin(x1)x2 + cos(x4)ex5 ≠ fix6 is another example.

Given this wealth of continuous functions, we can now exhibit all kinds
of closed subsets of Rn.
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Exercise 10.4.11. (a) Sn≠1 µ Rn is closed. This is because Sn≠1 is the
preimage of the one-element set {1} µ R (which is closed) with respect
to the function x ‘æ dist(0, x) (which is continuous). Note that this
sphere is also bounded, so Sn≠1 is compact when given the subspace
topology inherited from Rn.

(b) The unit disk Dn µ Rn is closed. This is because Dn is the preimage of
the interval [0, 1] (which is closed in R) with respect to the function x ‘æ
dist(0, x) (which is continuous). Since Dn is bounded, Dn is compact by
the Heine-Borel theorem.

(c) Fix an integer i between 1 and n. The “ith upper half space” {x œ
Rn | xi Ø 0} is closed. This is because this is the preimage of the interval
[0, Œ) (which is closed in R) under the projection map x ‘æ xi (which is
continuous). This is not bounded, so the upper half space is closed and
not compact.

(d) The “non-negative octant”

{x œ Rn | For all i, xi Ø 0

is closed. This is because the octant is the intersection of the upper half-
spaces from the previous example (and an intersection of closed sets is
closed.) This set is also not bounded.

(e) The hyperplane

{(x0, . . . , xn) |
nÿ

i=0
xi = 1} µ Rn+1

is closed, because this set is the preimage of the singleton set {1} (which
is closed in R) under the function (x0, . . . , xn) ‘æ x0 +x1 + . . .+xn (which
is continuous). This set is not bounded.

(f) The n-simplex �n µ Rn+1 is closed. This is because the n-simplex can
be expressed as the intersection of the hyperplane from the previous
example with the positive octant. This set is bounded, so the n-simplex
(given the subspace topology) is compact by the Heine-Borel theorem.
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(g) Let f : R æ R be a continuous function. Then the graph of f , which is
defined to be the subset of R2 defined by

{(x1, x2) | f(x1) ≠ x2 = 0}

is a closed subset of R2. This is because this is the preimage of {0} (which
is a closed subset of R) under the function R2 æ R, (x1, x2) ‘æ f(x1)≠x2.
This is a continuous map because it is obtained by combining continuous
functions together. (The notion of “combining” is left vague for the
moment.) This set is not bounded—for example, there are points on the
graph of f with arbitrarily large x1 coordinate.

(h) Let f : Rn æ R be a continuous function, fix a real number a, and
consider the set

{x | f(x) Ø a}.

This is a closed subset of Rn. This is because the set is a pre-image of
the set [a, Œ) (which is closed in R) under the map x ‘æ f(x) ≠ a.
You can take finite unions and arbitrary intersections of the above exam-

ples to produce many, many closed subsets of Rn.

10.5 Useful facts about compactness
We haven’t seen yet why compactness is useful. Here is a first sign:

Proposition 10.5.1. Let X be compact.1 Fix a continuous function f :
X æ Y . Then the image of f—endowed with the subspace topology inherited
from y—is compact.

In words, the image of a compact space is compact (so long as the image
is taken with respect to a continuous function).

Proof. We must show that any open cover of f(X) admits a finite subcover.
By definition of subspace topology, a subset V µ f(X) is open if and only

if V = W fl f(X) for some open subset W µ Y . So, fixing an open cover V
of f(X), we know that for every V œ V, we may find some W µ Y for which
V = W fl f(X).

1Note that at this point, we may infer that X is a topological space; this is because
“compact” is an adjective that only makes sense for topological spaces.
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Let f Õ : X æ f(X) denote the continuous function guaranteed by the
universal property of the subspace topology.2 Because f Õ is continuous, we
may pull back V along f Õ and obtain an open cover of X. (This is Proposi-
tion 10.2.1.)

Concretely, this pull-back cover is

U = {U µ X | U = (f Õ)≠1(V ) for some V œ V.

(As defined in Proposition 10.2.1.)
Now we use the fact that X is compact. U is an open cover, so by

compactness of X, U admits a finite subcover. Let us denote the elements of
this finite subcover by

U1, . . . , Un.

Well, by definition, for each i, there is some Vi œ V such that Ui = f≠1(Vi).
So consider the collection

V1, . . . , Vn.

Note that each Vi is a subset of f(X).
I claim this collection {V1, . . . , Vn} is a cover of f(X). To see this, we

must show that every element of f(X) is contained in some Vi. Well, let
y œ f(X). By definition, y is in the image of f , so there exists some x œ X
for which f(x) = y. Because the U1, . . . , Un are a cover of X, we conclude
that x œ Ui for some i. By definition, this Ui is the preimage of Vi, so we
conclude that f(x) œ Vi. Recalling that we chose x so that f(x) = y, we
conclude that the y we began with is an element of Vi. This shows that
{V1, . . . , Vn} forms a cover of f(X).

So we have exhibited a finite subcover {V1, . . . , Vn} of V.

Remark 10.5.2. Thus, compactness is one of the few properties that “push
forward” under a continuous map. Usually, preimages behave well under
continuity by definition. We’ve already seen examples where preimages of
compact spaces need not be compact, but here we see that images of compact
spaces are always compact.

In the above proof, we have put together some of the wonderful ingredients
we’ve learned so far—the universal property of subspaces, and that open
covers pull back, for example.

Here is a corollary of the above fact:
2Remember, in terms of formulas, f

Õ(x) = f(x). The meat of f
Õ is the ability to change

the codomain of f .



112 LECTURE 10. COMPACTNESS, II. HEINE-BOREL THEOREM.

Corollary 10.5.3. Let X be a compact topological space, and let f : X æ R
be a continuous function. Then f(X) is compact.

Now, let me state that it is incredibly common to study functions from a
space into R. For example, if X is the set consisting of points on the surface
of the earth, f : X æ R could be a function sending a point x to the height
of x above/below sea level. Or it could send x to the temperature at x, or
the pressure, et cetera.

As you well know, there are points of “highest elevation” on earth. It also
turns out that, if you assume the temperature function is continuous, there
will (at any given moment time) be a point of highest and lowest temperature.
This is a consequence of the fact that we can say what all compact subsets
of R must look like! It turns out that every compact subset of R contains a
maximal and minimal element. We will get to that later.

Here is another useful fact.

Proposition 10.5.4. Let X be a compact topological space, and let A µ X
be a closed subset. Then A (with the subspace topology inherited from X)
is compact.

In other words, closed subsets of compact spaces are compact.

Proof. We must show that every open cover of A admits a finite subcover.
Choose an open cover U of A. By definition of subspace topology, for

every U œ U there is some V œ TX such that U = V fl A.3 Choose one V for
every U œ U, and let V denote the collection of these chosen V . (So V is in
bijection with U.)

Now consider the collection W = V
t{AC}. That is, W consists of the

sets V , and of another set called AC . Note that AC is open because A is
closed; so every member4 of W is open.

Moreover, I claim that W is a cover of X. Indeed, a point of x is either in
A or not. If x is not in A, then x œ AC , which is a member of W. If x œ A,
then there is some U œ U for which x œ U . In particular, x is in the V we
chose to correspond to U .

This shows that W is an open cover.
3As usual, TX stands for the topology on X.
4Member is a synonym for element. So a member of a set is the same thing as an

element of a set.
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By compactness of X, W admits a finite subcover. But if W is an open
cover of X, its pull-back to A is an open cover of A. Moreover, we see that
i≠1
A (Vi) = Vi flA is precisely equal to some Ui œ U. So this pullback is a finite

subcover of U, proving that A is compact.


