
Lecture 11

Compactness, III. Extreme
value theorem.

11.1 John the aspiring ballerino

Here’s a story.
John loved ballet. He would go watch ballet twice a week, over 90 minutes

each time. He loved the movements, he loved the music, he loved everything
about ballet and watched with a passion. He longed to be a ballerino.

He signed up for an audition for the local ballet troupe. On the day of
his audition, he got up on stage. He was asked if he was familiar with Swan
Lake. He said yes, he’d seen it over and over. He had watched YouTube
videos analyzing dancers, had heard dancers speak about their experiences
performing Swan Lake, he had seen it all.

John was asked to perform any sequence from it.
And of course, he could not. He had never danced on his own. He had

never taken lessons, or had a teacher; but worst, he had never spent the
hours necessary to practice, to watch himself in a mirror, to dance.

Watching lectures will not teach you math. You have to try to dance
yourself, and to learn how to improve what you seen in the mirror. When
you take an exam, you will not be assessed for the time you spent as an
audience. You will be assessed for the time you spent alone practicing.
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11.2 Three results today
Today we’ll cover three results.

Proposition 11.2.1. Let A µ R be compact.1 Then there exists a maximal
element in A.

More precisely, there exists a œ A such that for all aÕ œ A, a Ø aÕ.2

Proof. By the Heine-Borel theorem, A is both closed and bounded.
Because A is bounded, there exists some r > 0 such that A is contained

in the interval (≠r, r) µ R. In particular, there is some real number b for
which aÕ œ A =∆ aÕ Æ b. Let us call such a number b an upper bound for
A. (Note that there are infinitely many upper bounds for A.) By the least
upper bound property of the real line3, the set of upper bounds of A has a
minimal element called b0. In other words, b0 is the smallest real number
satisfying the upper bound property.

I claim that b0 is an element of A. (This would prove the proposition.)
To see this, for every integer n Ø 1, we simply choose an element an œ A
such that dist(an, b0) Æ 1/n. This is possible because b0 is the least upper
bound.

Then the sequence {an}nØ1 converges to b0 (Given any ‘ > 0, choose N
large enough so that 1/N < ‘, and we see that dist(an, b0) < ‘ for all n Ø N).

But A is closed, so b0 œ A.

Proposition 11.2.2. Let X be compact, and f : X æ Y a continuous
function. Then the image of f (given the subspace topology inherited from
Y ) is compact.

Proof. We must prove that f(X) is compact. Instead of the function f :
X æ Y , consider the function f Õ : X æ f(X) which sends any x œ X to
f(x) œ f(X). The function f Õ is continuous by the universal property of the
subspace topology (for f(X)).

1By the Heine-Borel theorem, this means A is a closed and bounded subset of R. Also
as usual, when we say that A is compact, we are really endowing A with the subspace
topology inherited from the standard topology on R. This is important, because a set may
admit many di�erent topologies.

2Here we are using the usual order on R—whether two numbers are less than or equal
to each other.

3This is a property of the real line we won’t go over in this class; you’ll see it, or have
learned about it, in analysis.
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Let V be any open cover of f(X). Then because f Õ is continuous, and by
the construction of pullback open covers,

U := {U µ X | U = (f Õ)≠1(V ) for some V œ V}

is an open cover for X. Because X is compact, we may choose a finite
subcover {U1, . . . , Un}. For each i = 1, . . . , n, choose V œ V to be an open
subset for which Ui = (f Õ)≠1(Vi).

I now claim that the collection {V1, . . . , Vn} is a subcover of V. It su�ces
to show that V1

t
. . .

t
Vn = f(X). To see this, choose y œ f(X). Then

by definition of image, there is some x œ X for which f(x) = y. Because
{U1, . . . , Un} is an open cover, there is some i for which x œ Ui. In other
words, there is some i for which x œ (f Õ)≠1(Vi), meaning f Õ(x) œ Vi. But
f Õ(x) = f(x) = y, so we conclude y œ Vi. This shows that the union
V1

t
. . .

t
Vn contains f(X); because this union is a priori a subset of f(X),

we see that the union equals f(X).
This completes the proof.

Combining the above results gives us:

Theorem 11.2.3 (Extreme Value Theorem). Let X be compact, and let
f : X æ R be a continuous function. Then f attains a maximal value.

That is, there exists some x œ X such that, for every xÕ œ X, we have
that f(x) Ø f(xÕ).

Proof. The image f(X) µ R is compact by Proposition 11.2.2. Thus it has
a maximal value by Proposition 11.2.1.

Remark 11.2.4. The condition that X be compact is necessary. For exam-
ple, let X = R and let f : X æ R be the identity function, so f(x) = x.
This attains no maximal value.

For the rest of today, you will choose either Proposition 11.2.2 or the
Extreme Value Theorem, and you will try over and over until you can write
the proof on your own.

This is similar to a dancer practicing until they can nail down a move, or
to any other athlete/musician/artist honing their craft.


