
Lecture 12

Making new sets: Equivalence
relations and quotient sets

Today we’re going to learn about how to take a set X, and then “identify”
di�erent elements of X as though they were equal. This involves (i) Saying
what we mean by a rule for declaring various elements of X equivalent, and
(ii) Constructing a new set that results from equating those elements (making
those elements equal, not just equivalent).

Such a construction is really important for topology. A lot of spaces are
created by “gluing” certain points together. (You’re familiar with this from
when you were far younger—we made new shapes by gluing things together.)

You may have already seen these notions—of equivalence relations, equiv-
alence classes, and quotient maps—so this may be review. But I hope you
come away with some new insights.

12.1 Spreadsheets

At the start of every semester, I take a survey. Sometimes, a students fills
out the survey multiple times. And I might get a resulting spreadsheet that
looks like this:
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Erica Berica
John Doe

Ralph Ralphson
john doe
Alejandra

Oyendamola
John doe
Doe john

ralph ralphson
erica berica

Clearly, John and Erica and Ralph filled out the survey multiple times. And
as a result, I have a list of names that is longer than the actual list of names
in class. So let’s say I want to create a new spreadsheet with the correct
number of students.

One way that you would probably do this is by deleting some of the
repeated rows. Here are two possible outcomes of doing this:

Erica Berica
john doe
Alejandra

Oyendamola
ralph ralphson

Ralph Ralphson
john doe
Alejandra

Oyendamola
erica berica

Great. But here is how we might do it after today’s class:

{ Erica Berica, erica berica }
{ john doe, John Doe, John doe, Doe john }

{ ralph ralphson, Ralph Ralphson }
{ Alejandra }

{ Oyendamola }

The three lists above have the same number of rows: five. But rows of this
third list do not consist of a name; every row consists of a set of names.
So for example, the last row is not a name called Oyendamola, it consists
of a set with one element in it (and this element happens to be the name
Oyendamola). Likewise, the first row is a set consisting of two elements; the
two elements are Erica Berica, and erica berica. The way we produced this
list of five sets is by creating sets that consist of equivalent names.
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There are advantages and disadvantages to these two approaches. (One
approach is to create a new list by deleting rows; the other is to create a new
list of sets by creating sets out of equivalent names.) The great advantage of
the second approach is that there is a natural function from the original list
of names to the final list of sets of names: You send a name to the set that
it’s contained in. For example,

John Doe ‘æ { john doe, John Doe, John doe, Doe john },

and
Doe john ‘æ { john doe, John Doe, John doe, Doe john }.

More generally, given a set X (for example, the set of names entered in a
survey) we can create a rule about when to consider two elements of X to
be equivalent. This rule is called an equivalence relation, and we will give
a rigorous definition shortly. Once we are given this rule, we can create a
new set, which we will call X/≥. (This is read “X mod tilde,” or “X mod
twiddle,” or sometimes, X mod sim). An element of X/≥ will be a set of
elements of X. Any element of X/≥ will be a set containing all elements of
X that are equivalent to each other. There will be a natural function from
X to X/≥, taking an element of X to the set of elements equivalent to it.

This X/≥ will be called a quotient of X by the equivalence relation ≥,
and the function X æ X/≥ is called the projection map.

12.2 Equivalence relations
We have seen a similar idea before when we dealt with posets. There, we
wanted to encode how two elements of a set P could be related to each other.
We came to the conclusion that, to declare that p Æ pÕ, we can specify an
element called (p, pÕ) in the set P ◊ P . So the entire partial order relation
was encoded by a subset we called R µ P ◊ P .

Likewise, when we declare a rule for treating certain elements of X as
equivalent, we will encode this information in a subset R µ X ◊ X. We
will think of two elements x, xÕ as equivalent if and only if (x, xÕ) œ R.
Immediately, we see some natural things we should demand of R:

(i) Every element of X should be equivalent to itself.

(ii) If x is equivalent to xÕ, then certainly xÕ should be equivalent to x.
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(iii) If x is equivalent to xÕ and xÕ is equivalent to xÕÕ, then x should be
equivalent to xÕÕ.

Remark 12.2.1. There is a big di�erence between the word “equal” and
the word “equivalent.” In a set, two things are equal if they are literally
the same thing—that is, the “two things” were actually one thing. But two
things that are not equal may be “equivalent” from some perspective. For
example, suppose we have two congruent triangles in the plane. The two
triangles may not literally be equal (for example, their vertices may be at
di�erent points of the plane) but, depending on our purpose at the moment,
we may want to consider these two unequal triangles to be equivalent. As
another example, two similar triangles (i.e., having equal angle measures)
may not be equal, but we may want to consider them as equivalent.

As another example, you might consider two numbers to be equivalent if
they are both even, or if they are both odd. Clearly 2 and 4 are not equal,
but they may be considered equivalent for certain purposes.

One point of emphasis is that the notion of equivalence is up to us. We can
decide when we want to consider two things to be equivalent based on what
is convenient in the moment. “Equivalent” is not some canonical notion, but
rather a notion we must specify in each context.

As a final example, two posets may not be the same, but isomorphic.
Two spaces may not be the same, but homeomorphic. These are examples
of equivalences—and clearly, they cater to the context of our study.

Following our intuitions laid out above, mathematicians have come upon
the following definition.

Definition 12.2.2 (Equivalence relation). Let X be a set. A subset R µ
X ◊ X is called an equivalence relation on X if R satisfies the following
propreties:

(i) For all x œ X, the element (x, x) is in R.

(ii) For all x, xÕ œ X, if (x, xÕ) œ R, then (xÕ, x) œ R.

(iii) For all x, xÕ, xÕÕ œ X, if (x, xÕ) and (xÕ, xÕÕ) are in R, then (x, xÕÕ) is in R.

Notation 12.2.3. Sometimes we are lazy. Instead of writing out the whole
sequence of symbols (x, xÕ) œ R, we will write x ≥ xÕ. In this notation, the
above conditions can be re-written as
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(i) For all x œ X, x ≥ x.

(ii) For all x, xÕ œ X, if x ≥ xÕ, then xÕ ≥ x

(iii) For all x, xÕ, xÕÕ œ X, if x ≥ xÕ and xÕ ≥ xÕÕ, then x ≥ xÕÕ.

Notation 12.2.4. Likewise, we will sometimes refer to ≥ as an equivalence
relation (rather than R). When you read the sentence “Let ≥ be an equiv-
alence relation on X,” you should understand that the notation ≥ actually
represents the data of R.

12.3 Examples of equivalence relations
Example 12.3.1. Let X = Z. Let R µ Z◊Z be the of all pairs (a, b) œ Z◊Z
satisfying the condition that b≠a is divisible by 2. I claim R is an equivalence
relation:

(i) For all a œ Z, a ≠ a = 0, which is divisible by 2. So indeed, (a, a) œ R.

(ii) If a ≠ b is divisible by 2, then so is b ≠ a = ≠(a ≠ b). So (a, b) œ R =∆
(b, a) œ R.

(iii) Note that (c ≠ a) = (c ≠ b) + (b ≠ a). If we know that both c ≠ b and
b ≠ a are divisible by 2, then so is their sum—hence c ≠ a is divisible
by 2. This shows that if (a, b) œ R and (b, c) œ R, then (a, c) œ R.

Example 12.3.2. Let X and Y be sets, and fix a function f : X æ Y .
Define a relation R µ X ◊ X by declaring that for points x, xÕ œ X, (x, xÕ) œ
R ≈∆ f(x) = f(xÕ). Then R is an equivalence relation.

(i) For any x œ X, we of course have f(x) = f(x), so (x, x) œ R.

(ii) If f(x) = f(xÕ), then f(xÕ) = f(x).

(iii) If f(x) = f(xÕ) and f(xÕ) = f(xÕÕ), then of course f(x) = f(xÕÕ).

Example 12.3.3. Let X be the set of all humans. Given two humans x and
xÕ, we will say that x ≥ xÕ if and only if x is related to xÕ (i.e., if they are
related genetically or as family).

(i) Any person is related to themselves.
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(ii) If person x is related to person xÕ, then person xÕ is related to person
x.

(iii) If person x is related to person xÕ and if person xÕ is related to person
xÕÕ, then person x is related to person xÕÕ.

(Warning: The notion of being “related to” is informally familiar to us, but
I am not giving a rigorous definition of family or genetic relation.)

Example 12.3.4 (Diagonal relation). Let X be a set. The diagonal relation,
or diagonal equivalence relation, is the set � = {(x, x)}. that is, � consists
of all pairs (x, xÕ) for which x = xÕ. This is an equivalence relation.

(i) By definition, for every x œ X, we see that (x, x) œ �.

(ii) If x ≥ xÕ, then x = xÕ, so xÕ = x; in particular, xÕ ≥ x.

(iii) If x ≥ xÕ and xÕ ≥ xÕÕ, then x = xÕ and xÕ = xÕÕ, so x = xÕÕ, hence
x ≥ xÕÕ.

Example 12.3.5 (Trivial relation). Let X be a set. The trivial relation
(sometimes called the universal relation) is the relation given by X ◊ X. So
for any x, xÕ œ X, we have that x ≥ xÕ. (Everything is equivalent.) The three
properties of being an equivalence relation are verified straightforwardly.

12.4 Equivalence classes
So an equivalence relation allows us to create a mathematical framework for
when to think of certain elements in a set X as equivalent. (We think of x
and xÕ as equivalent if and only if (x, xÕ) œ R.)

Now let’s see how to construct a set where we have “identified” equivalent
elements of X. Informally, we are about to construct a new set where if x
and xÕ are equivalent in X, then “x = xÕ” in this new set. (This equality is
in “quotes” because x and xÕ will not be elements of this new set.)

Definition 12.4.1. Let R be an equivalence relation on X, and choose a
subset E µ X. We say that E is an equivalence class (or an R-equivalence
class) if the following holds:

1. E has at least one element. (So E is non-empty.)



12.4. EQUIVALENCE CLASSES 125

2. For any two elements x, xÕ œ E, we have that x ≥ xÕ.

3. If x œ E and xÕ is an element in X for which x ≥ xÕ, then xÕ œ E.

Remark 12.4.2. Here is an example of what an equivalence class is. Suppose
that you think of two elements x and xÕ as “in the same family” if x ≥ xÕ.
Then one equivalence class can be thought of as one family—everybody in
E is in the same family, and everybody in that family is in E. Importantly,
E is not just part of one family, nor does it contain members from multiple
families.

Definition 12.4.3. Let X be a set and R an equivalence relation on X.
Then X/≥ is the set of all R-equivalences classes.

Remark 12.4.4. So X/≥ is another “bag of bags.” In fact, X/≥ is a subset
of the power setP(X)—X/≥ is a collection of subsets of X.

In terms of the previous remark, you can think of X/≥ as the collection
of all families. So an element of X/≥ is a family. Note that a family is a
set–it contains members.

Notation 12.4.5. Let X be a set and R an equivalence relation. Given an
element x œ X, we let [x] denote the equivalence class to which x belongs.
In other words,

[x] = {xÕ œ X | xÕ ≥ x}.

Warning 12.4.6. Note that even if x ”= xÕ, it may be that [x] = [xÕ]. So be
careful about the notation [x]; it is very convenient, but it can be di�cult
to remember which elements are contained in [x]. Remember that [x] is a
set—in fact, [x] µ X.

On the other hand, the fact that x ”= xÕ but we can have [x] = [xÕ] is
exactly the manifestation of what we wanted: Two elements may not be the
same but equivalent; in X/ ≥, they become equal according to the rules we
set out for equivalence.

Example 12.4.7. If X = Z and an equivalence relation is defined by a ≥
b ≈∆ a ≠ b is divisible by 2, then X/ ≥ has exactly two elements. The two
elements can be written as

{. . . , ≠4, ≠2, 0, 2, 4, . . .}, {. . . , ≠3, ≠1, 1, 3, . . .}.

In other words, the two sets are the set of all even numbers, and the set of
all odd numbers.
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Example 12.4.8. If X is a set and R = X ◊ X is the trivial relation, then
X/ ≥ has exactly one element. (Informally, this is because the trivial relation
declares every element to be equivalent, so once you “collapse” all of them,
or identify every element, you are left with one thing. Or, there is one family,
because everybody is related.)

12.5 The quotient map
Definition 12.5.1. Let X be a set and ≥ an equivalence relation. There is
a function

q : X æ X/ ≥, x ‘æ [x].
We call this the quotient map.

Example 12.5.2. If X is a set of people and we declare x ≥ xÕ if x and xÕ

are related, let’s say that x and xÕ are in the same family if they are related.
Then X/ ≥ is the set of families, and the quotient function q : X æ X/ ≥
sends a person to the family they are a member of.

12.6 Exercises
Exercise 12.6.1. Let X = {a, b}. (This is a two-element set.) Write down
all equivalence relations that this set admits, and write down all equivalences
classes for each equivalence relation.

(You should be able to write two equivalence relations. One of them
will give rise to one equivalence class, while the other will give rise to two
equivalences classes.)

Let X = {a, b, c}. (This is a three-element set.) Repeat the above.
(You should be able to write five equivalence relations.)

Exercise 12.6.2. Let X be a set and ≥ an equivalence relation.

(i) Show that the quotient map X æ X/ ≥ is a surjection.

(ii) Show that if E and E Õ are two equivalence classes, then either E = E Õ

or E fl E Õ = ÿ.

(iii) Show that €

EœX/≥
E = X.
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Exercise 12.6.3. Let X, Y be sets and f : X æ Y a function. Let ≥ be the
equivalence relation from Example 12.3.2.

Exhibit a bijection between f(X) and X/ ≥.

Exercise 12.6.4. Let A µ X ◊ X be any subset. Show that there exists an
smallest equivalence relation RA so that A µ RA.

More precisely, construct an equivalence relation RA with A µ RA such
that for any other equivalence relation R such that A µ R, we have that
RA µ R.

This RA is called the equivalence relation generated by A.
(Hint: This is similar to your homework problem about constructing the

smallest topologies possible. Show that the intersection of equivalence rela-
tions is an equivalence relation, and that A is contained in some equivalence
relation; then let RA be the intersection of all equivalence relations containing
A.)


