
Lecture 15

Product spaces and their
universal property

15.1 Direct products (Cartesian products)
Let X and Y be two sets. Recall that the direct product, or the Cartesian
product of X and Y is denoted

X ◊ Y

and is defined to be the set consisting of pairs (x, y) where x œ X and y œ Y .
As an example, R2 = R◊R, and a point of R2 is precisely an (ordered) pair
of real numbers.

One thing I would like to emphasize is that there are functions called
projection functions, or projection maps, defined as follows:

pX : X ◊ Y æ X, (x, y) ‘æ x

and
pY : X ◊ Y æ Y, (x, y) ‘æ y.

Here is a subtle fact about products of sets that you may not have learned
about before: How do you define functions to X ◊ Y ?

Proposition 15.1.1. Let W be a set. To give a function f : W æ X ◊ Y
is the same thing as giving a function W æ X and a function W æ Y .

More precisely, there exists a bijection

{f : W æ X ◊ Y } ≥= {(W æ X, W æ Y )}
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136LECTURE 15. PRODUCT SPACES AND THEIR UNIVERSAL PROPERTY

between the set of functions from W to X◊Y , and the set of pairs of functions
from W (to X and to Y ).

Here is how the proof goes. Given a function f : W æ X ◊ Y , we can
post-compose with the projection maps. This gives a pair of functions

pX ¶ f : W æ X, pY ¶ f : W æ Y.

On the other hand, suppose you are given a pair of functions gX : W æ X
and gY : W æ Y . This defines a function g as follows:

g : W æ X ◊ Y, g(w) = (gX(w), gY (w)).

I claim that the assignments

Â : f ‘æ (pX ¶ f, pY ¶ f), „ : (gX , gY ) ‘æ g

are mutually inverse to each other. Indeed,

(„ ¶ Â)(f)(w) = ((pX ¶ f)(w), (pY ¶ f)(w)) = f(w)

and
(Â ¶ „)(gX , gY ) = (pX ¶ g, pY ¶ g) = (gX , gY ).

Example 15.1.2. A function from a set W to R2 is completely determined
by a pair of functions from W to R.

15.2 Product spaces
Now let X and Y be topological spaces with topologies TX and TY , respec-
tively. It turns out we can endow X ◊ Y with a topology called the product
topology. We’ll define it in a moment, but first, the universal property:

Theorem 15.2.1 (Universal property of the product topology). Let X and
Y be topological spaces. Then there exists a topology on X ◊ Y satisfying
the following properties:

(i) Each projection map pX : X ◊ Y æ X, pY : X ◊ Y æ Y is continuous.
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(ii) For any topological space W , and for any pair of continuous functions
gX : W æ X, gY : W æ Y , there exists a continuous function g : W æ
X ◊ Y such that

gX = pX ¶ g, gY = pY ¶ g.

(iii) Moreover, g is unique among such functions. That is, if there is some
other continuos function h : W æ X ◊ Y for which gX = pX ¶ h and
gY = pY ¶ h, then h = g.

In terms of diagrams,

W
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⌧⌧

’gY

��

’gX

''
X ◊ Y

pX //

pY

✏✏

X

Y

.

Again, universal properties are supposed to help you. For example, you
might be afraid that X ◊ Y is complicated. But it is easy to understand
continuous functions to X ◊ Y . You just need to understand continuous
functions to X, and continuous functions to Y . Then you understand all
continuous functions to X ◊ Y .

So what is this magical topology?

Definition 15.2.2. Let X and Y be topological spaces. Then the product
topology on X ◊ Y is defined as follows. We declare a subset U µ X ◊ Y
to be open if and only if U can be written as a union of sets of the form
VX ◊ VY , where VX œ TX and VY œ TY .

Theorem 15.2.3. The product topology satisfies the properties of the the-
orem above.

Proof. (i) pX is continuous, as for any open subset UX µ X, we can prove
that p≠1

X (UX) = UX ◊ Y . Because UX œ TX and Y œ TY , this set is open in
the product topology of X ◊ Y . Likewise, pY is continuous.
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(ii) Given gX : W æ X and gY : W æ Y , define g(w) = (gX(w), gY (w)).
Then it follows that pX ¶ g = gX and pY ¶ g = gY . We must now prove that
g is continuous. To see this, let U µ X ◊ Y be open. Then

U =
€

–œA

V– ◊ V Õ
–

where for all –, we know that V– œ TX and V Õ
– œ TY . Thus

g≠1(U) = g≠1

Q

a
€

–œA

V– ◊ V Õ
–

R

b . =
€

–œA

g≠1 (V– ◊ V Õ
–) .

Now we note that, for all – œ A,

g≠1(V– fl V Õ
–) = g≠1

X (V–) fl g≠1
Y (V Õ

–).

This is a finite intersection of open subsets of W (because gX and gY are
continuous) hence for all –, the set g≠1(V– fl V Õ

–) is open in W . We thus see
g≠1(U) is a union of of open subsets of W , hence is open.

This proves g is continuous.
(iii) If h is another such function, then for all w, we see that pX(h(w)) =

pX(g(w)) and pY (h(w)) = pY (g(w)). It follows that h(w) = g(w) for all w,
hence h = g.

In homework, you will prove that the standard topology on R2 agrees
with the product topology on R2.

15.3 Direct products of infinitely many sets
Now let A be an arbitrary set. And for each – œ A, choose a set X–.

Warning 15.3.1. This is like choosing a function from A to the “collection
of sets.” However, a famous paradox (Russell’s paradox) proves that there is
no such thing as the set of all sets. Strangely, it is intuitively healthy but
logically unhealthy to think of the choice above as a function to the set of
all sets.

Then the direct product of the X– is the set of all collections (x–)–œA for
which x– œ X– for all –. The direct product is denoted

Ÿ

–œA

X–.
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In words, an element of r
–œA X– is the same thing as a choice of element x–

in each X–.

Example 15.3.2. Let A = {1, 2} be a two-element set, and choose two sets
X1 and X2. Then there is a natural bijection

Ÿ

–œA

X–
≥= X1 ◊ X2.

This is because an element of the right hand side is the choice of x1 œ X1 and
x2 œ X2. Such a choice encodes exactly an ordered pair (x1, x2) œ X1 ◊ X2.

Example 15.3.3. Now let A be the set

ZØ1,

the set of all positive integers, and choose a set Xi for every i œ ZØ1. Then
Ÿ

iœZØq

Xi

is the collection of all sequences (x1, x2, x3, . . .) where for each i > 0, xi is an
element of Xi.

In the special case that each Xi happens to be the set R, then an element
of r

iœZØ0 R is the same thing as a sequence in R, in the sense of calculus or
analysis.

Example 15.3.4. Let A be the set of all particles in the universe, and for
each particle – œ A, let X– be the set of possible states that the the particle
can be in. Then an element of the direct product

Ÿ

–œA

X–

is the data of choosing a state for every particle in the universe. The idea of
“state” is ill-defined here, but you get the idea.

The important point here is that you can take direct products of possibly
infinitely many sets (if A is infinite)—not just two.

Just as before, there are projection maps p– : r
–œA X– æ X– sending

an element (x–)–œA of the domain to x– (you forget all the components
except the – component). And as before, for any set W , to give a function
f : W æ r

X– is the exact same thing as giving a function f– : W æ X–

for every – œ A.
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Theorem 15.3.5 (Universal property of direct products (of possibly in-
finitely many spaces)). Let A be a set and for each – œ A, choose a topolog-
ical space X–. Then there exists a topology on the direct product r

–œA X–

satisfying the following properties:

(i) For every – œ A, the projection map p– : r
–œA X– æ X– is continuous.

(ii) For any topological space W , fix for every – a continuous function g– :
W æ X–. Then there exists a continuous function g : W æ r

–œA X–

such that
g– = p– ¶ g.

(iii) Moreover, g is unique among such functions. That is, if there is some
other continuous function h : W æ r

–œA X– such that, for all –,
g– = p– ¶ h, then h = g.

Again, this theorem is meant to make r
–œA X– seem easier. Even if

you don’t understand the space r
–œA X–, you can understand all continuous

functions into it. To give some continuous function to r
–œA X–, you just

need to give A-many continuous functions g– : W æ X–. In the exercises,
you will prove that every function to r

–œA X– arises in this way.

Definition 15.3.6. Let A be a set and for each – œ A, choose a topological
space X–. Then the product topology on the set r

–œA X– is defined as follows:
A subset U µ r

–œA X– is called open if and only if U can be written as a
union of sets of the form Ÿ

–œA

V–

V– µ X– is open for each –, and V– = X– for all but finitely many –.

Theorem 15.3.7. The product topology satisfies the properties of the the-
orem above.

Proof. (i) For every –, p– is continuous, as for any open subset U– µ X–,
we see that p≠1

– (U–) is a direct product of all the X–Õ (for –Õ ”= –) with U–.
Such a direct product is open in the product topology by definition.

(ii) Given continuous functions g– : W æ X– for every –, define g(w) =
(g–(w))–œA. Then it follows that for all –, p– ¶ g = g–. We must now prove
that g is continuous. To see this, let U µ X ◊ Y be open. Then

U =
€

—œB

U—



15.4. EXERCISES 141

where each U— is of the form r
–œA V– and all but finitely many – satisfy the

property that V– = X–, while all V– µ X– are nevertheless open. (This is by
definition of product topology.)

Thus

g≠1(U) = g≠1

Q

a
€

—œB

U—

R

b . =
€

—œB

g≠1 (U—) .

Now we note that, for all — œ B,

g≠1(U—) = g≠1
–1 (V–1) fl . . . g≠1

–n
(U–n)

where the V–1 , . . . , V–n are the finitely many open subsets that are proper
open subsets (of the X–1 , . . . , X–n). This is a finite intersection of open
subsets of W (because each g– is continuous) hence for all —, the set g≠1(U—)
is open in W . We thus see g≠1(U) is a union of of open subsets of W , hence
is open.

This proves g is continuous.
(iii) If h is another such function, then for all w and for all –, we see that

p–(h(w)) = p–(g(w)). It follows that h(w) = g(w) for all w, hence h = g.

15.4 Exercises
Exercise 15.4.1. Show that a function f : W æ X ◊ Y is continuous if and
only if pX ¶ f and pY ¶ f are both continuous.

Exercise 15.4.2. Show that the product topology is the smallest topology
for which pX and pY are both continuous. That is, if any other topology
TÕ on X ◊ Y satisfies the property that pX and pY are continuous, then the
product topology is contained in TÕ.

Exercise 15.4.3. Let P and Q be posets and give each the Alexandro�
topology. Let T be the product topology on P ◊ Q. On the other hand,
recall that we can endow P ◊ Q with a partial order relation by declaring
that (p, q) Æ (pÕ, qÕ) ≈∆ p Æ pÕ&q Æ qÕ. Let TÕ be the Alexandro� topology
on P ◊ Q. Show that T = TÕ.

Exercise 15.4.4. Let A be a set and for each – œ A, suppose we are given
a topological space X–. For any topological space W , show that a function
f : W æ r

–œA X– is continuous if and only if, for each – œ A, p– ¶ f is
continuous.
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Exercise 15.4.5. Let X1, . . . , Xn be a finite collection of discrete topological
spaces. Show that the product space

X1 ◊ . . . ◊ Xn

is discrete.

Exercise 15.4.6. Let A be an infinite set. For each – œ A, let X– = {a, b}
with the discrete topology. Show that the product space

Ÿ

–œA

X–

is not discrete.

Exercise 15.4.7. Let A be an infinite set. For each – œ A, suppose we are
given a space X– with the trivial topology. Show that the product space

Ÿ

–œA

X–

also has the trivial topology.

Exercise 15.4.8. Let A = ZØ1 be the set of positive integers, and for each
i œ A, let Xi = {0, 1, . . . , 9} be the set of digits (i.e., whole numbers between
0 and 9). One can think of an element of Xi as a “decimal” number whose
unit digit is 0, whose 1st place past the decimal point is given by x1 œ X1,
whose 2nd place past the decimal point is given by x2 œ X2, and so forth:

(x1, x2, x3, . . .) œ
Ÿ

iœZØ1

Xi ≈∆ 0.x1x2x3 . . . .

This defines a function
f :

Ÿ

iœZØ1

Xi æ R

by treating a decimal string as a real number.
(i) Is this function continuous?
(ii) Can you write down an equivalence relation on r

iœZØ1 Xi that makes
f a bijection onto the subset [0, 1] µ R?

(iii) Is the inverse function [0, 1] æ (r
iœZØ1 Xi)/ ≥ continuous?


