
Lecture 17

Hausdor�ness

So far we have seen many examples of topological spaces.

1. Any set with the discrete topology (every set is open)

2. Any set with the trivial topology (only the set itself and the empty set
are open)

3. Posets with the Alexandro� topology (upward closed sets are open)

4. Euclidean space with the standard topology (a set is open if it’s a union
of open balls)

5. Subsets of spaces (given the subspace topology)

6. Quotients of spaces

7. Products of spaces.

This is a really long list! We haven’t even scratched the surface on how
many new spaces we can create using these tools.

But now that we’re beginning to see many kinds of spaces, it will be good
to know about properties that distinguish di�erent spaces.

Example 17.0.1. For example, the poset (R, Ø) with the Alexandro� topology—
is it homeomorphic to R with the standard topology? Obviously R is in
bijection with itself (in many ways; but certainly via the identity function)
but are any of the bijections homeomorphisms?
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Does (R, Ø) have a topological property that R with the standard topol-
ogy doesn’t have? Or vice versa? If so, the two spaces could not be homeo-
morphic.

One example of a topological property we’ve seen is compactness. This is
still something we need to develop intuition about, but if X is compact and
Y isn’t, then X and Y are not homeomorphic. So they’re not equivalence
spaces.

Today, we’ll learn a new topological property, called Hausdor�ness.
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17.1 Interlude on learning math
I was inspired by one of your peers’ homework assignments. They wrote the
following:



Writing Assignment 6 
October 2, 2020 
After looking over my lecture notes for this class, the first thing that sticks out to me is the 
definition of what a topology is. After reading the definition, it seems to make sense and is easy 
for me to follow the requirements for a topology on X. However, a few remarks later,  I come 
across an example containing posets and topologies. This example is where I find myself 
confused and find it difficult to understand what a topology really is. So, I go back into my notes 
and try to find the definition of what a poset is. After reviewing, I move back to the example and 
still find myself stuck and unsure how to go about this problem and realize that I don’t really 
understand the definition of topology. What I think is confusing me the most is the actual word: 
topology. It is something I have never heard of and had no idea it had anything to do with 
mathematics until taking this course.  
After rereading my notes, I decided to look up the definition of topology online. What I came 
across on several different websites are very similar to the definition given in class. However, 
one website in particular made things a little more clear. This PDF defines what a topological 
space is right before defining a topology. Being able to visualize what a topological space is 
before trying to figure out what a topology is actually cleared up some confusion I had. I 
understand now that a topological space (X, T), where X is a set and T is a set of subsets of X 
(satisfying certain axioms) and is a topology. Then I can clearly see that a topology T on a set X 
consisting of subsets of X satisfies 3 properties, which I am very clear on. Looking back, I think 
what really freaked me out is the actual word topology. It does feel more comfortable but I think 
I need to see more examples on how this works to feel 100% confident with it now. Before this 
assignment I was very unsure of what a topology is but now I feel that I could define what a 
topology is without being hesitant.
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I am sure many of you can resonate with your peer’s experience. It
is universal! This is what learning math feels like; it’s what good science
feels like. Science is the exploration of things we don’t understand, and
understanding requires clear and precise thinking processes. That’s what
any good math class is trying to teach you.

You might know that the Fields Medal is one of the most prestigious prizes
one can win in math. It’s sometimes compared to the Nobel Prize. (There
are no Nobel Prizes in math.) Here’s what a Fields Medalist named Kunihiko
Kodaira once said about reading and learning math. (Hiro translated this
from Japanese.)

To me, there is nothing harder to read than a math book (papers included).

To read through a math book of hundreds of pages, from beginning to end, is

a Herculean task. When I open a math book, there are first axioms and

definitions; then there are theorems and proofs. I know that mathematics is

a thing which becomes incredibly easy and clear once you understand it, so

I try to read only the theorems and somehow understand. I try to think of

proofs on my own. Most of the time, I don’t get it even after I think about it.

Having no other choice, I try reading the proof in the book. But even after

reading it once or twice, I still don’t feel like I understand it. So I try copying

the proof into my notebook. Then I notice a part of the proof I dislike. I try

to think if there must be another proof. It’s great if I find one right away,

but otherwise it takes a long time until I give up. And if I go about in this

way, after a month finally arriving at the end of the first chapter, I forget

the content toward the beginning. Having nothing else I can do, I review the

chapter from the start again. Then the entire structure of the chapter begins

to bother me. I think things like, it seems better to take care of Theorem

Seven before proving Theorem Three. So I create another notebook where I

reorganize the whole chapter. I finally feel like I understand the first chapter,

and I feel at peace, but it’s troublesome that it took so terribly long. To get

to the last chapter of a book with hundreds of pages is near impossible. I

would very much appreciate it if somebody could teach me a quick way to

read mathematical texts.

Of course, there is no quick way. Understanding is the one thing that
nobody else can do for you, and importantly, that you have to do for yourself
through great investment of time and patience.
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17.2 Hausdor�ness
Back to our regularly scheduled programming.

In Euclidean space, we’ve talked about how an open subset U contains
“wiggle room” for all its elements. There’s no obvious notion of “wiggle room”
in other topological spaces (which might not have notions of distance), but
regardless, let’s pretend that a set being open is a proxy for the property
that the set’s elements have some wiggle room.

Question: Given two points in a topological space, can they each have
some wiggle room to themselves?

This is an informal question. If any pair of points can be given wiggle
room to their own, the space will be called Hausdor� (formal definition be-
low). As we will see, not every space is Hausdor�, so this is a meaningful
property of topological spaces.

Definition 17.2.1. Let X be a topological space. X is called Hausdor� if it
satisfies the following property: For any pair of points x, xÕ œ X with x ”= xÕ,
there exists open subsets U, U Õ of X for which

• x œ U

• xÕ œ U Õ, and

• U fl U Õ = ÿ.

17.3 Examples of Hausdor� and non-Hausdor�
spaces

Example 17.3.1. The main example you should keep in mind of a Hausdor�
space is Rn (with the standard topology). Let’s verify that Rn is Hausdor�.

Given x, xÕ œ Rn with x ”= xÕ, we know that the distance d(x, xÕ) is
non-zero. So let’s choose

U = Ball(x, d(x, xÕ)/2)

and
U Õ = Ball(xÕ, d(x, xÕ)/2).
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These are open balls of equal radius, but they do not intersect each other!
(Can you see why? Hint: Triangle inequality.) In other words, the intersec-
tion of U and U Õ is the empty set. At the same time, clearly x œ U and
xÕ œ U Õ.

Because we can produce such U and U Õ for any x, xÕ with x ”= xÕ, we have
shown that Rn (with the standard topology) is Hausdor�.
Remark 17.3.2. Hausdor�ness is a kind of “separation axiom.” “Axiom” is a
word that was more en vogue in the past, and now-a-days we would probably
call this a separation “property.” An axiom is something we demand to be
true, or take for granted to be true; but we won’t be demanding that our
spaces are Hausdor�.

Hausdor�ness is a “separation” property because it asks whether we can
“separate” points x and xÕ from each other using enough wiggle room. (The
existence of open subsets, each containing x and xÕ, that don’t intersect, is
a proxy for saying that both x and xÕ admit wiggle room that don’t get in
each other’s ways.)

x U
xÕU Õ

x
U

xÕ
U Õ

Figure 17.1: On the left, two open sets U and U Õ “separating” x from xÕ. On
the right, another possible choice for U and U Õ (for the same x and xÕ as on
the left).
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Example 17.3.3. Let P = [n] = {0, 1, . . . , n} be our favorite poset. Then
P is not Hausdor�. For example, if x = 0 and xÕ = 1, you cannot find any
open subset of x that does not intersect an open subset of xÕ. (In fact, any
open subset of x contains xÕ.

Example 17.3.4. let P = P({a, b}) be the power set of the two-element set
{a, b}. Then P is not Hausdor�. For example, let x = {a} and xÕ = {b}.
then (by definition of the Alexandro� topology) any open set U containing
x must also contain {a, b}. Likewise, any open set U Õ containing xÕ must
contain {a, b}. Hence it is impossible to find U and U Õ (satisfying x œ U and
xÕ œ U Õ) for which U fl U Õ is empty.

So, if you thought that posets (with the Alexandro� topology) were
strange topological spaces, the Hausdor� property justifies your opinion. In
some ways, Hausdor� spaces tend to be “more intuitive” than non-Hausdor�
spaces. On the other hand, a space like Euclidean space may be more familiar
to us, and indeed, it is Hausdor�.

Example 17.3.5. Let X be a set. Then X with the discrete topology is
Hausdor�.

If X is given the trivial topology, then X is Hausdor� if and only if X
has one or fewer elements.

Example 17.3.6. Let X be Hausdor�. Then for any subset A of X, we can
conclude that A is Hausdor� (when endowed with the subspace topology).

To see this, choose two distinct points a, aÕ œ A. (Distinct means a ”= aÕ.)
Well, we know X is Hausdor�, so we can find V, V Õ µ X for which V, V Õ are
both open, a œ V, aÕ œ V Õ, and V fl V Õ = ÿ.

Consider the sets U = A fl V and U Õ = A fl V Õ. Each is open in A by
definition of subspace topology. Clearly a œ U and aÕ œ U Õ, and U fl U Õ µ
V fl V Õ = ÿ, so U fl U Õ = ÿ. This shows that A is Hausdor�.

Example 17.3.7. If X and Y are homeomorphic, then X is Hausdor� if
and only if Y is.

Example 17.3.8. Let X and Y be Hausdor�. Then the product space X◊Y
is Hausdor�. To see this, suppose that (x, y) ”= (xÕ, yÕ). (This means that
either x ”= xÕ, y ”= yÕ, or both.) Without loss of generality, suppose that
x ”= xÕ. Then because X is Hausdor�, we can find open U, U Õ µ X so that
U fl U Õ = ÿ while x œ U and xÕ œ U Õ.
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Then choose any open subset V µ Y containing y, and any open subset
V Õ µ Y containing yÕ. (We need not assume that V fl V Õ = ÿ.) Then
U ◊ V fl U Õ ◊ V Õ = ÿ because U fl U Õ = ÿ.

(Of course, by definition of product topology, both U ◊ V and U Õ ◊ V Õ

are open.)

Warning 17.3.9. Let X be Hausdor�, and R an equivalence relation on X.
Then it is possible that X/ ≥ is not Hausdor�.

For example, let X = R with the standard topology, and define an equiv-
alence relation ≥ for which

x ≥ xÕ ≈∆

Y
]

[
x ”= 0&xÕ ”= 0 or
x = xÕ = 0.

Then X/ ≥ is homeomorphic to the poset [1] (with the Alexandro� topology);
I encourage you to exhibit this homeomorphism. On the other hand, [1] is
not Hausdor� by a previous example.

Here is one way to summarize the previous example and warning: Haus-
dor�ness is a property preserved by products and subspaces, but not by
quotients.

17.4 Compact subspaces of Hausdor� spaces
Here is one way in which Hausdor� spaces behave somewhat similar to Eu-
clidean spaces: Some slight sliver of the Heine-Borel theorem holds for Haus-
dor� spaces.

Proposition 17.4.1. Assume X is Hausdor�.
If A µ X is compact (when given the subspace topology), then A is a

closed subset of X.

This is the best result we could hope for. There’s no notion of “bounded”
because X need not have any notion of distances. And the converse of the
above has to be false—even if A is closed in X, A need not be compact. (For
example, if A = X = Rn.)

Proof. Let me begin with a claim:
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Claim. For any y œ X \A, we can find an open subset Uy of X for which

(i) y œ Uy and (ii) Uy does not intersect A.

Suppose that you believe this claim. Then we see that AC = t
yœAC Uy.

It is clear that AC µ t
yœAC Uy, while on the other hand, none of the Uy

intersect A, so t
yœAC UY µ AC . In other words, AC is open because it is a

union of open sets. This proves that A is closed.
So everything is contingent on the above claim. This is where we use that

X is Hausdor� and that A is compact.
Fix y. for every x œ A, choose open sets Ux and Vx for which x œ Ux and

y œ Vx, and Ux fl Vx = ÿ. (This is possible because X is Hausdor�.) Then
the collection {Ux fl A}xœA forms an open cover of A. Because A is compact,
we may choose a finite subcover

{Ux1 fl A, . . . , Uxn fl A}.

Note define Uy = Vx1 fl . . . fl Vxn . Note that Uy does not intersect any of the
Uxi . In particular, Uy fl A = ÿ because the A µ t

i=1,...,n Uxi . Importantly, Uy

is open in X because it is a. finite intersection of open sets. This proves the
claim.

17.5 A convenient homeomorphism criterion
We’ve got some powerful adjectives at our disposal—compact, and Hausdor�.
We’ll use both in the following:

Theorem 17.5.1. Let X be compact and Y Hausdor�. Then any continuous
bijection f : X æ Y is a homeomorphism.

In other words, under the hypotheses of the theorem, you do not need to
check whether f≠1 is continuous to verify that f is a homeomorphism.

This is a very powerful theorem for producing a lot of homeomorphisms,
especially when X arises as a quotient space.

Here is a sample application of the theorem:

Example 17.5.2. Let X = [0, 2fi]/ ≥ where ≥ is the equivalence relation
for which 0 ≥ 2fi, 2fi ≥ 0, and t ≥ t for all t œ [0, 2fi].

Consider the function

g : [0, 2fi] æ R2, t ‘æ (cos(t), sin(t)).
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Of course, g has image given by the unit circle. By the universal property of
subspace topology, we have an induced continuous map

[0, 2fi] æ S1.

On the other hand, t ≥ tÕ =∆ g(t) = g(tÕ) because g(0) = g(2fi); so this
induces a continuous map by the universal property of quotient spaces:

f : [0, 2fi]/ ≥æ S1.

f is an injection and a surjection1; moreover, the domain of f is compact
because it is the quotient of a compact space. And the codomain is Hausdor�
because it is a subspace of a Hausdor� space. So the theorem applies.

In short, f is a homeomorphism. This proves that [0, 2fi]/ ≥ is homeo-
morphic to S1.

The proof of the theorem requires a lemma.

Lemma 17.5.3. Let X be compact. If A µ X is closed, then A (with the
subspace topology) is compact.

Proof. Let U = {U–}–œA be an open cover of A. We must exhibit a finite
subcover.

By definition of subspace topology, for every –, there exists V– open in
X for which U– = V– fl A.

Then the collection
{AC} fi {V–}–œA

is a cover of X. (We see that A µ t
V– while AC fi A = X.) It is in fact an

open cover because each V– is open, and AC is open by the assumption that
A is closed.

Because X is compact, we may find a finite subcover, which may look
like

{AC , V–1 , . . . , V–n}.

In fact, the subcover may not contain AC ; in any case, let’s consider the
collection without AC :

{V–1 , . . . , V–n}.

1I encourage you to check this if you haven’t seen this before!
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We see that

A µ A fl
Q

a
€

i=1,...,n

V–i

R

b =
€

i=1,...,n

A fl V–i .

Hence the sets U–i = A fl V–i form a cover of A, and {U–1 , . . . , U–n} exhibits
the finite subcover we seek.

Proof of Theorem 17.5.1. Let g be the inverse function of f . We must show
that g is continuous. For this, it su�ces to show that for every closed subset
A µ X, we have that g≠1(A) is closed in Y .

Because g is the inverse to f , we see that g≠1(A) = f(A). Because A is
closed in X and X is compact, we see that A is compact by the lemma. We
proved in a previous class (Proposition 10.5.1) that the continuous image of
a compact space is compact, so f(A) is compact. By Proposition 17.4.1, this
shows that f(A) = g≠1(A) is closed in Y . This shows that g is continuous,
and we are done.

17.6 Take-aways
It is easy to get lost in the weeds. A lot went into the above proofs. But
here’s what you need to walk away with:

• The definition of “Hausdor�.”

• All the examples and non-examples of Hausdor� spaces.

• Theorem 17.5.1, which allows you to prove that certain continuous
bijections are in fact homeomorphisms.


