
Lecture 18

Metric spaces

We’ve studied new constructions of spaces, and properties of spaces.

• Basic examples: Posets, Euclidean space, trivial topology, discrete
topology.

• Ways to make new spaces: Subspaces, quotient spaces, products.

• Properties: Compactness, Hausdor�ness.

Remark 18.0.1. If this were a course about “numbers,” you could make a
similar list as follows:

• Basic examples: 0, 1, fi.

• Ways to make new numbers: Adding, multiplying, subtracting, divid-
ing.

• Properties: Rational, irrational, positive, negative.

The ideas listed above are, of course, all central to your use and understanding
of numbers. If you go on to deal with topological spaces in any form, the
ideas we’ve learned so far are also central.

Today, we’re going to learn about a new family of spaces. Metric spaces.
These are, informally, spaces that arise by first cooking up some notion of
distance.

And, just like Hausdor� spaces are “nice” (as we discussed last time),
metric spaces will be even nicer.
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164 LECTURE 18. METRIC SPACES

18.1 Metrics
A metric is a way to define a notion of distance. The concrete definition will
be given shortly, but let’s write down some bare minimum requirements for
what we mean by a distance between two points.

1. If x and xÕ are two points in a space with some notion of distance,
if the distance between x and xÕ is zero, certainly x should equal xÕ.
Conversely, if x and xÕ are the same point, the distance between them
should be zero.

2. The distance from x to xÕ should be the same thing as the distance
from xÕ to x.

3. Finally—though this requires some thought—if we know the distance
from x to xÕÕ, then the sum of the distances through some intermediary
point should be larger than that distance. In other words, the distance
should represent some “minimal” way to get between two points, so if
there is a third point xÕ involved, the distance from x to xÕ, summed
with the distance form xÕ to xÕÕ, should not be minimal, so should
be larger than or equal to the distance from x to xÕÕ. (This wordy
description will be made more succinct in the definition below.)

Great. Now let’s make these requirements into checkable, mathematical
conditions.

So how do we describe a “distance function?” This should be something
which, to every pair of points in a set X, gives us a number called the distance
between those two points.

In other words, a distance function ought to be a function from X ◊ X
to R.

Definition 18.1.1 (Metric). Let X be a set. A metric on X is a function

d : X ◊ X æ R, (x, xÕ) ‘æ d(x, xÕ)

satisfying the following conditions:

1. For any x, xÕ œ X, we have that d(x, xÕ) = 0 if and only if x = xÕ.
(Non-degeneracy.)
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2. For any x, xÕ œ X, we have that d(x, xÕ) = d(xÕ, x). (Symmetry.)

3. For any x, xÕ, xÕÕ œ X, we have that

d(x, xÕ) + d(xÕ, xÕÕ) Ø d(x, xÕÕ).

(The triangle inequality.)

18.2 Examples of metrics
We’ve already seen an example of a metric:

Example 18.2.1. Let X = Rn, and define a function

d : Rn ◊ Rn æ R, (x, xÕ) ‘æ
ı̂ıÙ

nÿ

i=1
(xi ≠ xÕ

i)2.

This is the usual notion of distance on Euclidean space, and we call it the
standard metric on Rn. We have already seen that this satisfies the triangle
inequality in past classes. I leave it to you to verify the other two conditions.

Here is another example:

Example 18.2.2. Let X be any set. The discrete metric on X is the function

d : X ◊ X æ R, d(x, xÕ) =

Y
]

[
1 x ”= xÕ

0 x = xÕ.

In other words, all distinct points are declared distance 1 from each other.

So we’ve seen two examples of metrics on Rn: the standard metric, and
the discrete metric. There are many others!

Example 18.2.3. Let X = Rn. The lŒ metric on Rn is the following:

dlŒ(x, xÕ) = max
i=1,...,n

|xi ≠ xÕ
i|.

(Sometimes, this is also called the “sup metric.”)
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Example 18.2.4. Let X = Rn. The taxi cab metric on Rn is the following:

dtaxi(x, xÕ) =
nÿ

i=1
|xi ≠ xÕ

i|.

These are just functions for now; we’ll see ways in which they are di�erent
(and similar) later on.

Let me give you some more interesting examples.

Example 18.2.5. Let X be the set of all continuous functions from [0, 1] to
R. (Here, [0, 1] is given the usual subspace topology inherited from R.) For
this example, we will let letters like f and g denote elements of X. We will
let t denote an element of [0, 1].

Then we define the following function:

d : X ◊ X æ R, (f, g) ‘æ
⁄ 1

0
|f ≠ g| dt.

Yes, that is an integral. (Welcome back to calculus!) This is a really inter-
esting example, because X is intuitively a gigantic set. (There are a lot of
continuous functions from [0, 1] to the real line.) In many ways, it is un-

countably infinite-dimensional. And this may be the first time in your life
that you’ve thought about ways to put a notion of distance on such a gigantic
set.

So let’s carefully verify that d is indeed a metric.
(Non-degeneracy.) Suppose that f ≠ g does not equal zero. Then there is

some t0 œ [0, 1] for which f(t0) ≠ g(t0) ”= 0. Because f and g are continuous,
this means that there is some open interval containing t0 on which f ≠ g is
not zero. In particular, for some ‘ > 0, we know that f(t)≠g(t) is never zero
on the interval [t0 ≠ ‘, t0 + ‘]. Thus |f(t) ≠ g(t)| is always positive on this
interval. Using the the extreme value theorem, let m be the minimal value
of |f(t) ≠ g(t)| on [t0 ≠ ‘, t0 + ‘]. (Note that, necessarily, m > 0.) Then

⁄ t0+‘

t0≠‘
|f(t) ≠ g(t)| dt >

⁄ t0+‘

t0≠‘
m dt = m · 2‘ > 0.

Of course, because |f ≠ g| is a non-negative function, we have that
⁄ 1

0
|f ≠ g| dt Ø

⁄ t0+‘

t0≠‘
|f ≠ g| dt > 2m‘.
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On the other hand, if f ≠g does equal zero, of course
s 1

0 |f ≠g| dt =
s 1

0 0 dt =
10.

(Symmetry.) This is clear, as |f ≠ g| = |g ≠ f |.
(Triangle inequality.) Note that for every t œ [0, 1], we have that |f(t) ≠

g(t)| + |g(t) ≠ h(t)| Ø |f(t) ≠ h(t)|. (This is the usual triangle inequality for
real numbers.) This means

d(f, g) + d(g, h) =
⁄ 1

0
|f ≠ g| dt +

⁄ 1

0
|g ≠ h| dt (18.2.0.1)

=
⁄ 1

0
|f ≠ g| + |g ≠ h| dt (18.2.0.2)

Ø
⁄ 1

0
|f ≠ h| dt (18.2.0.3)

= d(f, h). (18.2.0.4)
Remark 18.2.6. By the way, you should remember that two functions f and
g are equal if and only if f(t) = g(t) for every element t in the domain. So
make sure you understand the di�erence between expressions like f (which
is a function) and expressions like f(t) (which is a number) above.

18.3 Metrics are never negative
In the definition of metric, I said that the metric is a function d : X ◊X æ R.
This might leave open the possibiliy that d could take on negative values,
but in fact, we have:
Proposition 18.3.1. If d : X ◊X æ R is a metric, then for every x, xÕ œ X,
we have thatd(x, xÕ) Ø 0.
Proof. By the triangle inequality, we know that

d(x, xÕ) + d(xÕ, xÕÕ) Ø d(x, xÕÕ)
for any triple x, xÕ, xÕÕ œ X. So choose xÕÕ to be equal to x. Then we have
that

d(x, xÕ) + d(xÕ, x) Ø d(x, x).
By symmetry, the lefthand side becomes 2d(x, xÕ). By non-degeneracy, the
lefthand side is zero. hence

2d(x, xÕ) Ø 0.

This shows that, for all x, xÕ œ X, d(x, xÕ) must be non-negative.
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18.4 Metric spaces
Definition 18.4.1. A metric space is a set X equipped with a metric d. We
will sometimes write a metric space as a pair (X, d); we may also say “let X
be a metric space” with the metric implicit in the notation.

18.5 Open balls
Definition 18.5.1. Let (X, d) be a metric space. Fix x œ X and r > 0.
Then the open ball of radius r centered at x is the set

{xÕ œ X | d(x, xÕ) < r}.

We will denote the open ball centered at x of radius r by

Ball(x, r).

Sound familiar? Yes, it’s the exact same definition as for Euclidean space
(with the standard metric), but what we see is that the notion of open ball
makes sense for any metric space.

Example 18.5.2. Let X be any set and let d be the discrete metric. Then

Ball(x, r) =

Y
]

[
{x} r Ø 1
X r > 1.

In other words, for the discrete metric, an open ball is either all of X, or a
singleton set.

18.6 Topologies from metrics
Every metric space gives rise to a topological space.

Definition 18.6.1. Let (X, d) be a metric space. Then the metric topology

on X, or the topology induced by the metric, is defined as follows. We say
that U µ X is open if and only if U can be written as a union of open balls.

Sound familiar?
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Example 18.6.2. Let X = Rn with the standard metric. Then the metric
topology on Rn is equal to the standard topology on Rn.

Example 18.6.3. Let X be any set and equip it with the discrete metric.
Then the metric topology on X is equal to the discrete topology on X.

18.7 Sequences
Let (X, d) be a metric space. Then we can talk about convergence of se-
quences in X.

Definition 18.7.1. Fix a sequence x1, x2, . . . in X. We say that the sequence
converges to a point b œ X if the following holds: For every ‘ > 0, there exists
some integer N so that i Ø N =∆ d(xi, b) < ‘.

Again, sound familiar?
A lesson is that a bunch of things we’ve defined for Euclidean space only

depended on some notion of distance (that is, on a metric). So once we have
a metric, we can talk about open balls, sequences, et cetera, just as we might
like to talk about in Euclidean space.

18.8 Continuity
We have a theorem as follows:

Theorem 18.8.1. Let (X, dX) and (Y, dY ) be metric spaces. (Here, dX

denotes a metric for X, and dY a metric for Y .) Fix a function f : X æ Y .
Then the following are equivalent.

1. f is continuous (with respect to the metric topologies on X and Y ).

2. For every x œ X and for every ‘ > 0, there exists ” > 0 so that for all
xÕ œ X,

dX(x, xÕ) < ” =∆ dY (f(x), f(xÕ)) < ‘.

3. For every sequence x1, x2, . . . , in X converging to b, the sequence
f(x1), f(x2), . . . converges to f(b).
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Just as with universal properties, this theorem is supposed to help you.
Let me tell you why. This theorem gives you many, many di�erent ways
of seeing whether a function is continuous! That’s a good thing. And you
may ask, then, which of the three methods given by the theorem is the best
strategy for proving that a function is continuous? As usual, this depends
on how the spaces X and Y are defined, and also on how the function f is
defined.

18.9 Exercises
Exercise 18.9.1. Let (X, d) be a metric space. Show that X (with the
metric topology) is Hausdor�.

Exercise 18.9.2. Verify that the lŒ metric is a metric.

Exercise 18.9.3. Draw the open ball of radius 1, centered at the origin, of
dlŒ on R2.

Exercise 18.9.4. Verify that the taxi cab metric is a metric.

Exercise 18.9.5. Draw the open ball of radius 1, centered at the origin, of
dtaxi on R2.

Exercise 18.9.6. Let X be the set of continuous functions from [0, 1] to R,
with the metric from Example 18.2.5.

Choose some t0 œ [0, 1]. Consider the evaluation function

evt0 : X æ R, f ‘æ f(t0).

Is evt0 continuous?

Exercise 18.9.7. Let A be any set, and let (X, d) be any metric space. Let
us call a function f : A æ X bounded if there exists some real number M
such that for every a, aÕ œ A, we have that d(f(a), f(aÕ)) < M . Let F (A, X)
denote the set of all bounded functions from A to X.

Define a function

dsup : F (A, X) ◊ F (A, X) æ R, (f, g) ‘æ sup
aœA

d(f(a), g(a)).

(sup is the least upper bound; if you haven’t taken an analysis class that has
introduced sup yet, this exercise may be di�cult.)

Is dsup a metric?
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Exercise 18.9.8. Let (X, dX) and (Y, dY ) be metric spaces. Define a func-
tion

d : (X ◊ Y ) ◊ (X, Y ) æ R, ((x, y), (xÕ, yÕ)) ‘æ dX(x, xÕ) + dY (y, yÕ).

Is d a metric? If so, how does the metric topology of X ◊ Y compare to the
product topology (when each of X and Y are given the metric topology)?

18.10 Take-aways
Why should we care about metric spaces?

First, metrics give us a new way to construct topological spaces. For
example, it probably wasn’t obvious at all that we can put a meaningful
topology on the set of continuous functions on [0, 1]. But we can!

Second, the general results of this lecture shows a connection between cer-
tain kinds of geometry (when we can measure distances, we can do geometry)
and topology (which has to do with very fuzzy notions like open sets). If you
go forth with more math, this will not be the last time that you encounter
such a connection.

Third, metrics give us tools for studying topological spaces and continuous
functions. For example, if we know that X and Y have topologies that arise
from metrics, we have three very di�erent-looking ways to check whether a
function f : X æ Y is continuous.

Finally, metrics are more intuitive than abstract open sets. So you may
find that metric spaces become your favorite kinds of spaces. For example,
as you see in the exercises, any metric space is Hausdor� (hence nice).


