Lecture 19

Isometries

One more definition about metric spaces. When are two metric spaces equivalent?

Definition 19.0.1. Let X and Y be metric spaces. A function $f: X \rightarrow Y$ is called an isometry if
(i) f is a bijection, and
(ii) For all $x, x^{\prime} \in X$, we have that $d\left(f(x), f\left(x^{\prime}\right)\right)=d\left(x, x^{\prime}\right) .{ }^{1}$

Informally, f is a function that "preserves" the distances in the domain with the distances in the codomain.

Example 19.0.2. As an example, fix a real number a and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function sending a vector x to $a x$. This is an isometry if and only if $a= \pm 1$.

Your mathematical scope has expanded so much! We now know about sets (two of which are equivalent when there is a bijection between them), posets (two of which are equivalent when there is a poset isomorphism between them), spaces (two of which are equivalent when there is a homeomorphism between them), and metric spaces (two of which are equivalent when there is an isometry between them).

[^0]
19.1 Exercises

Exercise 19.1.1. (a) Let $f: X \rightarrow Y$ be an isometry. Show that the inverse function to f is also an isometry.
(b) Show that the composition of two isometries is an isometry.

Exercise 19.1.2. Is every isometry a homeomorphism?
Given two metric spaces X and Y, and a homeomorphism f from X to Y (giving each space the metric topology), must f be an isometry?

Exercise 19.1.3. Fix a real number θ and consider the matrix

$$
A=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

Show that the function $x \mapsto A x$ is an isometry of \mathbb{R}^{2} with the standard metric.

For what values of θ is this an isometry for the taxicab metric? For the l^{∞} metric?

[^0]: ${ }^{1}$ Note that this equality involves the metric on Y and the metric on X.

