
Lecture 20

Path-connectedness

We are really building up some tools to study spaces. Today, we’ll talk about
the idea of what it means for a space to be path-connected. It’s another nice
property of a topological space. It will also lead to our first “invariant” of a
topological space!

20.1 Path-connectedness
Let’s say you’re in a topological space X, at a point x0. Is it possible to
“continuously walk” from x0 to x1? Let’s first try to define what such a
continuous walk would be.

We begin with an example.

Example 20.1.1. Let X = [0, 1] ‡[2, 3] µ R, drawn below:

• •
0 1

• •
2 3

Would you call X connected?

Remark 20.1.2 (Properties of spaces vs. properties of subsets). Above, I
used that X was a subset of R to define the topology of X, but once we know
about X’s topology, we could ask the connectedness question of X (without
reference to R). Is the following space connected?

• • • •
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(Importantly, the picture makes no reference to R itself.) So unlike “closed”
or “open,” the adjective “connected” makes sense as a property of a space
X. And when we ask whether a subset is connected, we are asking about
the property of that subset as a space (endowed with the subspace topology).
Aside from specifying the topology of the subspace, the parent set is irrelevant
to the question of connectedness.

I want to talk today about two di�erent ways to talk about the connect-

edness of a topological space.
This is the most intuitive definition. First, some preliminaries: We let

[0, 1]

denote the usual closed interval from 0 to 1. We treat it as a topological
space by giving it the subspace topology inherited from R.

Definition 20.1.3. Let X be a topological space. A continuous path (or
path for short) in X is a continuous function

“ : [0, 1] æ X.

Example 20.1.4. Below is an image of a possible path “ : [0, 1] æ R2.

•
x0

x1
•

Note that a path need not be injective (it can cross over itself).

Definition 20.1.5. Let X be a topological space, and fix a path “ : [0, 1] æ
X. We say that “ is a path from “(0) to “(1).
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Definition 20.1.6. Let X be a topological space. We say that X is path-

connected if for any two points x, xÕ œ X, there exists a path from x to
xÕ.

We can straightforwardly check that path-connectedness is indeed a prop-
erty of topological spaces preserved by homeomorphisms:

Proposition 20.1.7. If X and Y are homeomorphic, then X is path-connected
if and only if Y is.

Proof. Suppose X is path connected. We must show Y is path-connected.
So choose y0, y1 œ Y . We must exhibit a continuous path from y0 to y1.
To do this, let f : X æ Y be a homeomorphism, g the inverse to f , and
let xi = g(xi). Because X is path-connected, there is a continuous map
“ : [0, 1] æ X satisfying “(0) = x0 and “1 = x1. Because f is continuous,
f ¶ “ is a continuous function from f(x0) to f(x1). We are finished by
observing that f(xi) = yi.

If Y is path-connected, we can see that X is path-connected by the same
argument.

Remark 20.1.8. In fact, the proof method shows that if there is a continuous
surjection from X to Y , then the path-connectedness of X implies the path-
connectedness of Y .

20.2 Examples
Example 20.2.1. Let X = R. Then X is path-connected. To see this, fix
any two points x, xÕ œ X. Then define a function “ by “drawing a straight
path from x to xÕ.” The previous sentence was vague, so let’s make it precise:
Define

“ : [0, 1] æ X, “(t) = x + t(xÕ ≠ x).
Note that x and xÕ are constants (we’ve fixed them!) while t is the variable.

“ is a continuous function. Let’s shed some light on why: Because we’ve
given [0, 1] the subspace topology, the inclusion

[0, 1] æ R, t ‘æ t

is a continuous function. Now let f : R æ R be the linear function t ‘æ
x + t(xÕ ≠ x). This is continuous (for example, it’s a polynomial). Hence the
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composition
[0, 1] æ R f≠æ R

is continuous. On the other hand, this composition is precisely “.
Finally, note that “(0) = x and “(1) = xÕ.

Example 20.2.2. More generally, let X = Rn (with the standard topology).
Then X is path-connected. To see this, given x and xÕ in X, again define

“ : [0, 1] æ Rn, t ‘æ x + t(xÕ ≠ x).

Note now that we are using vector scaling and vector addition/subtraction
to define “. This is continuous because because the standard topology on Rn

is the product topology. By the universal property of the product topology,
to check the continuity of “, we only need to check that every component of
“ is continuous. That is, we just need to check that the n functions

t ‘æ x1 + t(xÕ
1 ≠ x1), . . . , t ‘æ xn + t(xÕ

n ≠ xn)

are continuous. But we saw this already in the previous example!
So “ is continuous, and “ is a path from x to xÕ.

Let’s also see some examples of spaces that are not path-connected. In
the following examples, the main tool we use will be the intermediate value

theorem from calculus.

Example 20.2.3. Let X = [0, 1] ‡[2, 3] µ R, drawn below as before:

• •
0 1

• •
2 3

Then X is not path-connected.
Indeed, I’ll take x to be some point in [0, 1] and xÕ to be some point in

[2, 3]. Suppose (for the purpose of contradiction) that there is a path

“ : [0, 1] æ X

from x to xÕ. Then the composition

f : [0, 1] “≠æ X æ R
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(where the second map is the inclusion map) is continuous. By the inter-
mediate value theorem from calculus, for any value y such that x Æ y Æ xÕ,
there must be some t œ [0, 1] such that f(t) = y.

But “ has image contained in X, and in particular, the composition f
has no image in the open interval (1, 2). In particular, we have been led to a
contradiction.

Example 20.2.4. Let X be the subset of R2 drawn below, given the subspace
topology:

Then X is not path-connected. The proof is similar as the previous example,
so I will be brief: By way of contradiction, suppose “ : [0, 1] æ X is a
continuous path from x to xÕ, where x is in the lower-right component of X
and xÕ is in the upper-left component. Then consider the composition

f : [0, 1] “≠æ X æ R2 æ R

where the middle arrow is the inclusion, and the last arrow is the projection
map sending (x1, x2) ‘æ x1. Then f is continuous, being a composition of
continuous functions; but again, f will violate the intermediate value theo-
rem.

Example 20.2.5. Let X be the subset of R2 shaded below, given the sub-
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space topology:

Then X is not path-connected. The proof is similar as the previous example,
so I will be brief: By way of contradiction, suppose “ : [0, 1] æ X is a
continuous path from x to xÕ, where x is in the middle component of X and
xÕ is in the outer component. Then consider the composition

f : [0, 1] “≠æ X æ R2 æ R

where the middle arrow is the inclusion, and the last arrow is now the map
sending an element y œ R2 to the number d(x, y). Then f again violates the
intermediate value theorem.

(Here, we are using the very nice fact that d(x, ≠) is a continuous function
on any metric space.)

Remark 20.2.6. In studying path-connectedness, we may draw pictures or
use arguments reminiscent of analysis class. This is because of the central
role of the real line in these discussions ([0, 1] is a subspace of R), and because
your analysis class is devoted to the study of the real line.


