Lecture 22

Connectedness. Stereographic
projection

Today we're going to talk about a different, more abstract notion of con-
nectedness. Then we’ll talk about a very useful function to know about:
Stereographic projection. This will lead us into the topic of one-point com-
pactifications.

22.1 Being open and closed in [0, 1]

For reasons that aren’t obvious, let’s see something interesting about the
topology of [0, 1]:

Proposition 22.1.1. Suppose that A C [0, 1] is a subset which is both closed
and open. Then A is either empty, or equal to [0, 1].

For this, we’ll use a Lemma:

Lemma 22.1.2. If B C [0,1] is open, and if b € B does not equal 0 or 1,
then there exists some € > 0 so that (b —¢€,b+¢€) C B.

Proof of Lemma 22.1.2. Since B C [0, 1] is open, by definition of subspace
topology, there exists W C R open so that B = W N[0, 1]. Now consider the
intersection W N (0,1). This is an open subset of R, being the intersection
of two open subsets—in particular, for any b € W N (0, 1), there exists an
open ball fully contained in W N (0, 1) containing b. Let € be the radius of
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196LECTURE 22. CONNECTEDNESS. STEREOGRAPHIC PROJECTION

this open ball. Then
(b—€e,b+¢) =Ball(b;e) cWN(0,1) cWnNI0,1] = B.
m

Proof of Proposition 22.1.1. Suppose B C [0,1] is closed and non-empty.
Then B is in fact closed as a subset of R.!' B is obviously bounded, so it
follows that B is compact by Heine-Borel.

Since the inclusion map B — R is continuous, the extreme value theorem
tells us that B has a maximal element, call it b € B. b must equal 1, else
Lemma 22.1.2 would contradict the maximality of b. Likewise, the minimal
element in B must equal 0.

This shows that B¢ must not contain 0 and 1. So now let us assume
that A C [0,1] is non-empty, and both closed and open; then the previous
argument for B = A shows A must not contain 0 and 1. But if A is open,
then A% is closed, so the argument for B = A® shows leads to a contradiction
unless A® = (). That A® = () means A = [0, 1], as desired. O

This proposition is powerful. For example, we have the following:

Corollary 22.1.3. Let X be a discrete topological space and fix elements
x,x’ € X. Then there exists a path from x to 2’ if and only if z = 2’.

Proof. Suppose v : [0,1] — X is continuous, and that z is in the image
of 7. because X has the discrete topology, the singleton set {z} is both
closed and open. (To see this, recall that every subset of X is open in the
discrete topology. In particular, both {z} and its complement are open.)
Thus, the preimage v~ ({z}) is both a closed and open subset of [0,1]. By
Lemma 22.1.1, the preimage must be either empty or all of [0,1]. Because
we assumed x to be in the image,

v ({=}) =[0.1].
In particular, 7 is a constant function, so y(0) = y(1) = «. O

Example 22.1.4. So, if X is a discrete topological space with two or more
elements, X is not path-connected.

To see this, note that B¢ = W N0, 1] for some W C R open, by definition of subspace
topology. Then we can check that R\ B = W [J(R\ B), so that B is open in R. In fact,
if I C X is closed, then B C [ is closed if and only if B is also closed as a subset of X.
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22.2 Connectedness

So, path-connectedness was an intuitive notion: We’ll say a space is path-
connected if any two points can be connected by a path. Confusingly, the
term “path-connected” is not the same as the term “connected” in our cul-
ture.

We now discuss a far less intuitive notion:

Definition 22.2.1. We say that a space X is connected if the following holds:
If A C X is both open and closed, then either A = X or A = 0.

Example 22.2.2. By Proposition 22.1.1, we know that X = [0, 1] is a con-
nected space.

Example 22.2.3. Let X be a discrete topological space. If X has two or
more elements, X is not connected.

Example 22.2.4. Let X be the subset of R? drawn below, given the subspace
topology:

Let us label the lower-left component by A, and the upper-right component
by B. I claim that both A and B are each both open and closed.

To see that A is open, simply observe that there is an open ball W C R?
for which W N X = A (and then cite the definition of the subspace topology,
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which defines the topology on X C RR?):

Because B = A® C X, we conclude B is closed. To see B is open, likewise
observe an open ball in X containing B but not A:

So B is open, meaning A = B¢ is closed. This shows A C X is both open
and closed, but A # X and A # 0.

Notice that all our examples connectedness/path-connectedness are the
same. This is because of the following:

Proposition 22.2.5. If X is path-connected, then X is connected.
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Proof. We will prove the contrapositive—that is, if X is not connected, then
X is not path-connected.

Because X is not connected, there exists a subset A C X which is non-
empty, not all of X, but both open and closed.

So choose x € A, and choose 2’ € AY C X. I claim there is no path from
x to o’

To see this, suppose we have a continuous map = : [0,1] — X for which
7 intersects A, we must have that v~'(A) is non-empty. On the other hand,
A is both open and closed, so v7!(A) is both open and closed—this means
7~ 1(A) = [0, 1] by Proposition 22.1.1.

That is, if v(t) € A for some t, then v(¢t) € A for every t € [0,1]. In
particular, if x = v(0), then 2’ # ~(1). This proves the claim, and hence the
proposition. O]

Warning 22.2.6. There exist connected spaces that are not path-connected.

22.3 Stereographic projection

Stereographic projection is the function

1

I Tn+1

p:S"\{(0,...,0,1)} - R", (X1, s Tpy1) —

(1, ..., Tp).

Here is a description of p in words. For brevity, let us call the point (0,...,0,1) €
S™ the north pole of S™. Given a point x € S™ such that x is not the north
pole, p sends = to the intersection of

e the line through x and the north pole, with
e the hyperplane {z,,; = 0}, which one can identify with R".

Informally, stereographic projection is the function obtained as follows:
Given z € S?, we draw the line from the north pole through x. This line
intersects a unique point of the plane {x3 = 0}, and this point is p(z). See
Figure 22.1.

Note that the domain of stereographic projection is not all of S™, but S™
minus a north pole. Notice also that p is a bijection; this gives us an informal
way to think about S™—it is obtained from R™ by “adding one point” that
plays the role of the north pole of S™.
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Figure 22.1: A depiction of stereographic projection for S?. In blue is the
north pole; the red is an element x € S?, and in green is the image of x under
stereographic projection. Drawn also are S?, the plane R? (embedded as the
subset where x3 = 0) and the line connecting z to its image.

Remark 22.3.1. Here is one way to think about this: Imagine a nice smooth
rubber ball. If you puncture the rubber ball in one place (say, with a needle),
you can actually stretch out the entire rubber ball onto a flat surface. In fact,
by stretching and stretching, you can cover the entire plane.

And, by adding this one point to R"™, we obtain a compact topological
space (the sphere). It is important here that we know how to topologize
this set obtained by adjoining a point to R™. (There are ways to topologize
this set that do not result in S™, for example.) This process of adjoining
one point to a space, to obtain a new, compact space, is called one-point
compactification.

22.4 One-point compactification

Definition 22.4.1. Let X be a topological space. We are now going to
create a new topological space X .

As a set, XT = X[I{*}. In other words, X is the set obtained by
adjoining a single point called * to X.

The topology Tx+ is defined as follows: U C X is open if either
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1. *x ¢ U and U is open in X, or

2. * € U and U N X is the complement of a closed, compact subspace of
X.

We call Xt the one-point compactification of X.

Remark 22.4.2. Note that if X is Hausdorff, we may remove the adjective
“closed” from the second condition above.

22.5 Basic properties/Exercises
Proposition 22.5.1. Tx+ is a topology on the set X .

(We need to prove that the collection of sets U satisfying 1. or 2. satisfies
all the properties of a topology. You will want to use at some point that the
empty set is a compact space.)

Proposition 22.5.2. X is compact.

(We need to prove that every open cover of X+ admits a finite subcover.)

Remark 22.5.3. This justifies the word “compactification.”

Proposition 22.5.4. If X and Y are homeomorphic, so are Xt and Y.

Proposition 22.5.5. If X is Hausdorff, so is X*.

22.6 Examples/Exercises

Proposition 22.6.1. If X is compact, then X is homeomorphic to the
space X [[{*} with the coproduct topology.

Proposition 22.6.2. If X = R", then X is homeomorphic to S™. (This is
one of your homework assignments.)
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Solutions

Proof of Proposition 22.5.1. (i) We first show (), X * is in this topology. So let
U = 0. Then x ¢ U, so we must check whether () is open in X (by condition 1
of the definition of Tx+). It is, by definition of topological space (i.e., because
X itself is a topological space). Now let U = X*. Since * € U, we must
check whether U N X is the complement of a closed, compact subspace of X
(by condition 2 of the definition of Tx+). It is, because UN X = X and X
is the complement of (). (Note that () is both closed and compact.)

(ii)) Now let {U,}aca be an arbitrary collection where U, € Tx~+ for any
a € A. We must show that the union

U= UUCYCXJr

acA

is in Tx+.
Note that for any a € A, we know that

U.NX

has a complement given by a closed subspace of X. (This is true regardless
of whether U, satisfies case 1. or in case 2. of the definition of Tx+.) Let us
call this closed subspace K, and let us call the intersection

K = ﬂKa.

acA

Note that the arbitrary intersection of closed subsets is closed, so K C X is
closed. Then by de Morgan’s laws, we see that

XmU:Xm(U Ua) = () K.)¢ = K°.

acA acA

where the complement is taken inside X. Now, if x € U, then we have shown
that U is closed, so by condition 1. of the definition of 7%, we see that
U C Xt isindeed in Tx+.

On the other hand, if x € U, then for some o € A, we see that x € U,.
In particular, K, is not only closed, but also compact. Thus K C K, is a
closed subspace of a compact K,, meaning K itself is compact. This shows
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that U N X = K¢ is the complement of a compact, closed subspace of X, so
U is open by condition 2. of the definition of Tx+.

(iii) Now we must show that a finite intersection of elements in Tx+ is in
Tx+.

So fix Uy, ..., U,, a finite collection of elements in Tx+. For each i, let
K, =(Un X)?. Note that K; is closed, and is compact if * € U;. We let

U=Un..nU,Cc X"

and
K=K/U...UK, C X.

Note that by de Morgan’s laws, we again have
UNnX=K°cX

(where the complement is again taken inside X).

If « ¢ U, then U = K¢. Being a complement of a closed subset in X, we
see that U C X is open in X, so U € Tx+ by condition 1. of the definition.

If x € U, then * € U; for every i, so by condition 2, each K; is not only
closed but also compact. Lemma: The finite union of compact subspaces
is compact. (Proof: Given an open cover of K, note that the open cover
determines a finite subcover of each K;. Taking the union of these finite
subcovers, we have a finite union of finite collections; hence the resulting
union is a finite open cover of K itself.) Thus K itself is compact. By
condition 2, U is in Tx+. O

Proof of Proposition 22.5.2. Let {U,}aeca be an open cover of Xt. By defi-
nition of cover, there is some ay € A such that * € U,,. So by condition 2
of the definition of Tx+, we know

Xt=U, UK

where K is a compact, closed subspace of X and K NU,, = 0.

Before we go any further, let us point out that X C X7 is an open
subset by condition 1 of the definition of T*. Thus the subspace topology of
K C X7 is equal to the subspace topology of K C X.

Invoking the definition of open cover, and by definition of subspace topol-
ogy (for K C X), we know that the collection

{Ua N K}ainA
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is an open cover of K. Since K is compact, we can choose some finite
collection av, ..., a, so that {U,, N K,...,U,, N K} is an open cover of K.
In particular,

Uy, UU,, U...UU,,

is an open cover of X itself. This exhibits a finite subcover of the original
open cover, and we are finished. n

Proof of Proposition 22.6.1. We must show that W C X is open if and only
if WNX and W N {x} is open.
To see the latter claim, we must prove that the one-element set

U={x}cCc X"

is open. This is because U N X = () = X, where the complement is taken
in X. But X is closed (as a subset of itself), and is compact by hypothesis,
so by condition 2, U is open.

On the other hand, WNX is always open for a one-point compactification—
this is obvious if * € W by condition 1, and if x € W, then W N X is a
complement of a (compact and) closed subset of X by condition 2, hence by
definition of closedness, W N X is open in X.

This completes the proof. O

Proof of Proposition 22.6.2. Omitted, as it is entirely analogous to the solu-
tions to homework. O]

Proof of Proposition 22.5.4. Given a homeomorphism f : X — Y, define a
function
Xy r = *xx

XT YT, T —
g {f(m) re X.

Here, xy € YT represents the “extra point” in the one-point-compactification
of Y, and likewise for xx € X .

Clearly g is a bijection because f is. Let us show that U € X is open if
and only if g(U) C Y is open.

1. If xx ¢ U, then xy & ¢g(U). But because f is a homeomorphism,
g(U) = f(U) is open if and only if U N X = U is open.

2. If xx € U, then xy € g(U). This means that U N X = K¢ (where the
complement is taken in X') for some compact, closed K C X. But because f
is a homeomorphism, K C X is compact and closed if and only if f(K) C Y
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is also compact and closed. Thus f(U) NY is the complement of a closed,
compact subspace of Y if and only if U N X is the complement of a closed,
compact subspace of X. This completes the proof. ]



