
Lecture 22

Connectedness. Stereographic
projection

Today we’re going to talk about a di�erent, more abstract notion of con-
nectedness. Then we’ll talk about a very useful function to know about:
Stereographic projection. This will lead us into the topic of one-point com-
pactifications.

22.1 Being open and closed in [0, 1]
For reasons that aren’t obvious, let’s see something interesting about the
topology of [0, 1]:

Proposition 22.1.1. Suppose that A µ [0, 1] is a subset which is both closed
and open. Then A is either empty, or equal to [0, 1].

For this, we’ll use a Lemma:

Lemma 22.1.2. If B µ [0, 1] is open, and if b œ B does not equal 0 or 1,
then there exists some ‘ > 0 so that (b ≠ ‘, b + ‘) µ B.

Proof of Lemma 22.1.2. Since B µ [0, 1] is open, by definition of subspace
topology, there exists W µ R open so that B = W fl [0, 1]. Now consider the
intersection W fl (0, 1). This is an open subset of R, being the intersection
of two open subsets—in particular, for any b œ W fl (0, 1), there exists an
open ball fully contained in W fl (0, 1) containing b. Let ‘ be the radius of
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196LECTURE 22. CONNECTEDNESS. STEREOGRAPHIC PROJECTION

this open ball. Then

(b ≠ ‘, b + ‘) = Ball(b; ‘) µ W fl (0, 1) µ W fl [0, 1] = B.

Proof of Proposition 22.1.1. Suppose B µ [0, 1] is closed and non-empty.
Then B is in fact closed as a subset of R.1 B is obviously bounded, so it
follows that B is compact by Heine-Borel.

Since the inclusion map B æ R is continuous, the extreme value theorem
tells us that B has a maximal element, call it b œ B. b must equal 1, else
Lemma 22.1.2 would contradict the maximality of b. Likewise, the minimal
element in B must equal 0.

This shows that BC must not contain 0 and 1. So now let us assume
that A µ [0, 1] is non-empty, and both closed and open; then the previous
argument for B = A shows AC must not contain 0 and 1. But if A is open,
then AC is closed, so the argument for B = AC shows leads to a contradiction
unless AC = ÿ. That AC = ÿ means A = [0, 1], as desired.

This proposition is powerful. For example, we have the following:

Corollary 22.1.3. Let X be a discrete topological space and fix elements
x, xÕ œ X. Then there exists a path from x to xÕ if and only if x = xÕ.

Proof. Suppose “ : [0, 1] æ X is continuous, and that x is in the image
of “. because X has the discrete topology, the singleton set {x} is both
closed and open. (To see this, recall that every subset of X is open in the
discrete topology. In particular, both {x} and its complement are open.)
Thus, the preimage “≠1({x}) is both a closed and open subset of [0, 1]. By
Lemma 22.1.1, the preimage must be either empty or all of [0, 1]. Because
we assumed x to be in the image,

“≠1({x}) = [0, 1].

In particular, “ is a constant function, so “(0) = “(1) = x.

Example 22.1.4. So, if X is a discrete topological space with two or more
elements, X is not path-connected.

1To see this, note that B
C = W fl [0, 1] for some W µ R open, by definition of subspace

topology. Then we can check that R \ B = W
t

(R \ B), so that B is open in R. In fact,
if I µ X is closed, then B µ I is closed if and only if B is also closed as a subset of X.
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22.2 Connectedness

So, path-connectedness was an intuitive notion: We’ll say a space is path-
connected if any two points can be connected by a path. Confusingly, the
term “path-connected” is not the same as the term “connected” in our cul-
ture.

We now discuss a far less intuitive notion:

Definition 22.2.1. We say that a space X is connected if the following holds:
If A µ X is both open and closed, then either A = X or A = ÿ.

Example 22.2.2. By Proposition 22.1.1, we know that X = [0, 1] is a con-
nected space.

Example 22.2.3. Let X be a discrete topological space. If X has two or
more elements, X is not connected.

Example 22.2.4. Let X be the subset of R2 drawn below, given the subspace
topology:

Let us label the lower-left component by A, and the upper-right component
by B. I claim that both A and B are each both open and closed.

To see that A is open, simply observe that there is an open ball W µ R2

for which W fl X = A (and then cite the definition of the subspace topology,
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which defines the topology on X µ RR2):

Because B = AC µ X, we conclude B is closed. To see B is open, likewise
observe an open ball in X containing B but not A:

So B is open, meaning A = BC is closed. This shows A µ X is both open
and closed, but A ”= X and A ”= ÿ.

Notice that all our examples connectedness/path-connectedness are the
same. This is because of the following:

Proposition 22.2.5. If X is path-connected, then X is connected.
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Proof. We will prove the contrapositive—that is, if X is not connected, then
X is not path-connected.

Because X is not connected, there exists a subset A µ X which is non-
empty, not all of X, but both open and closed.

So choose x œ A, and choose xÕ œ AC µ X. I claim there is no path from
x to xÕ.

To see this, suppose we have a continuous map “ : [0, 1] æ X for which
“ intersects A, we must have that “≠1(A) is non-empty. On the other hand,
A is both open and closed, so “≠1(A) is both open and closed—this means
“≠1(A) = [0, 1] by Proposition 22.1.1.

That is, if “(t) œ A for some t, then “(t) œ A for every t œ [0, 1]. In
particular, if x = “(0), then xÕ ”= “(1). This proves the claim, and hence the
proposition.

Warning 22.2.6. There exist connected spaces that are not path-connected.

22.3 Stereographic projection
Stereographic projection is the function

p : Sn \ {(0, . . . , 0, 1)} æ Rn, (x1, . . . , xn+1) ‘æ 1
1 ≠ xn+1

(x1, . . . , xn).

Here is a description of p in words. For brevity, let us call the point (0, . . . , 0, 1) œ
Sn the north pole of Sn. Given a point x œ Sn such that x is not the north
pole, p sends x to the intersection of

• the line through x and the north pole, with

• the hyperplane {xn+1 = 0}, which one can identify with Rn.

Informally, stereographic projection is the function obtained as follows:
Given x œ S2, we draw the line from the north pole through x. This line
intersects a unique point of the plane {x3 = 0}, and this point is p(x). See
Figure 22.1.

Note that the domain of stereographic projection is not all of Sn, but Sn

minus a north pole. Notice also that p is a bijection; this gives us an informal
way to think about Sn—it is obtained from Rn by “adding one point” that
plays the role of the north pole of Sn.
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Figure 22.1: A depiction of stereographic projection for S2. In blue is the
north pole; the red is an element x œ S2, and in green is the image of x under
stereographic projection. Drawn also are S2, the plane R2 (embedded as the
subset where x3 = 0) and the line connecting x to its image.

Remark 22.3.1. Here is one way to think about this: Imagine a nice smooth
rubber ball. If you puncture the rubber ball in one place (say, with a needle),
you can actually stretch out the entire rubber ball onto a flat surface. In fact,
by stretching and stretching, you can cover the entire plane.

And, by adding this one point to Rn, we obtain a compact topological
space (the sphere). It is important here that we know how to topologize

this set obtained by adjoining a point to Rn. (There are ways to topologize
this set that do not result in Sn, for example.) This process of adjoining
one point to a space, to obtain a new, compact space, is called one-point

compactification.

22.4 One-point compactification
Definition 22.4.1. Let X be a topological space. We are now going to
create a new topological space X+.

As a set, X+ = X
‡{ú}. In other words, X+ is the set obtained by

adjoining a single point called ú to X.
The topology TX+ is defined as follows: U µ X+ is open if either



22.5. BASIC PROPERTIES/EXERCISES 201

1. ú ”œ U and U is open in X, or

2. ú œ U and U fl X is the complement of a closed, compact subspace of
X.

We call X+ the one-point compactification of X.

Remark 22.4.2. Note that if X is Hausdor�, we may remove the adjective
“closed” from the second condition above.

22.5 Basic properties/Exercises

Proposition 22.5.1. TX+ is a topology on the set X+.

(We need to prove that the collection of sets U satisfying 1. or 2. satisfies
all the properties of a topology. You will want to use at some point that the
empty set is a compact space.)

Proposition 22.5.2. X+ is compact.

(We need to prove that every open cover of X+ admits a finite subcover.)

Remark 22.5.3. This justifies the word “compactification.”

Proposition 22.5.4. If X and Y are homeomorphic, so are X+ and Y +.

Proposition 22.5.5. If X is Hausdor�, so is X+.

22.6 Examples/Exercises

Proposition 22.6.1. If X is compact, then X+ is homeomorphic to the
space X

‡{ú} with the coproduct topology.

Proposition 22.6.2. If X = Rn, then X+ is homeomorphic to Sn. (This is
one of your homework assignments.)
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Solutions
Proof of Proposition 22.5.1. (i) We first show ÿ, X+ is in this topology. So let
U = ÿ. Then ú ”œ U , so we must check whether ÿ is open in X (by condition 1
of the definition of TX+). It is, by definition of topological space (i.e., because
X itself is a topological space). Now let U = X+. Since ú œ U , we must
check whether U fl X is the complement of a closed, compact subspace of X
(by condition 2 of the definition of TX+). It is, because U fl X = X and X
is the complement of ÿ. (Note that ÿ is both closed and compact.)

(ii) Now let {U–}–œA be an arbitrary collection where U– œ TX+ for any
– œ A. We must show that the union

U :=
€

–œA

U– µ X+

is in TX+ .
Note that for any – œ A, we know that

U– fl X

has a complement given by a closed subspace of X. (This is true regardless
of whether U– satisfies case 1. or in case 2. of the definition of TX+ .) Let us
call this closed subspace K–, and let us call the intersection

K :=
‹

–œA

K–.

Note that the arbitrary intersection of closed subsets is closed, so K µ X is
closed. Then by de Morgan’s laws, we see that

X fl U = X fl
Q

a
€

–œA

U–

R

b = (
‹

–œA

K–)C = KC .

where the complement is taken inside X. Now, if ú ”œ U , then we have shown
that UC is closed, so by condition 1. of the definition of T+, we see that
U µ X+ is indeed in TX+ .

On the other hand, if ú œ U , then for some – œ A, we see that ú œ U–.
In particular, K– is not only closed, but also compact. Thus K µ K– is a
closed subspace of a compact K–, meaning K itself is compact. This shows
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that U fl X = KC is the complement of a compact, closed subspace of X, so
U is open by condition 2. of the definition of TX+ .

(iii) Now we must show that a finite intersection of elements in TX+ is in
TX+ .

So fix U1, . . . , Un, a finite collection of elements in TX+ . For each i, let
Ki = (Ui fl X)C . Note that Ki is closed, and is compact if ú œ Ui. We let

U = U1 fl . . . fl Un µ X+

and
K = K1 fi . . . fi Kn µ X.

Note that by de Morgan’s laws, we again have

U fl X = KC µ X

(where the complement is again taken inside X).
If ú ”œ U , then U = KC . Being a complement of a closed subset in X, we

see that U µ X is open in X, so U œ TX+ by condition 1. of the definition.
If ú œ U , then ú œ Ui for every i, so by condition 2, each Ki is not only

closed but also compact. Lemma: The finite union of compact subspaces
is compact. (Proof: Given an open cover of K, note that the open cover
determines a finite subcover of each Ki. Taking the union of these finite
subcovers, we have a finite union of finite collections; hence the resulting
union is a finite open cover of K itself.) Thus K itself is compact. By
condition 2, U is in TX+ .

Proof of Proposition 22.5.2. Let {U–}–œA be an open cover of X+. By defi-
nition of cover, there is some –0 œ A such that ú œ U–0 . So by condition 2
of the definition of TX+ , we know

X+ = U–0 fi K

where K is a compact, closed subspace of X and K fl U–0 = ÿ.
Before we go any further, let us point out that X µ X+ is an open

subset by condition 1 of the definition of T+. Thus the subspace topology of
K µ X+ is equal to the subspace topology of K µ X.

Invoking the definition of open cover, and by definition of subspace topol-
ogy (for K µ X), we know that the collection

{U– fl K}–inA
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is an open cover of K. Since K is compact, we can choose some finite
collection –1, . . . , –n so that {U–1 fl K, . . . , U–n fl K} is an open cover of K.
In particular,

U–0 fi U–1 fi . . . fi U–n

is an open cover of X+ itself. This exhibits a finite subcover of the original
open cover, and we are finished.

Proof of Proposition 22.6.1. We must show that W µ X+ is open if and only
if W fl X and W fl {ú} is open.

To see the latter claim, we must prove that the one-element set

U = {ú} µ X+

is open. This is because U fl X = ÿ = XC , where the complement is taken
in X. But X is closed (as a subset of itself), and is compact by hypothesis,
so by condition 2, U is open.

On the other hand, WflX is always open for a one-point compactification—
this is obvious if ú ”œ W by condition 1, and if ú œ W , then W fl X is a
complement of a (compact and) closed subset of X by condition 2, hence by
definition of closedness, W fl X is open in X.

This completes the proof.

Proof of Proposition 22.6.2. Omitted, as it is entirely analogous to the solu-
tions to homework.

Proof of Proposition 22.5.4. Given a homeomorphism f : X æ Y , define a
function

g : X+ æ Y +, x ‘æ

Y
]

[
úY x = úX

f(x) x œ X.

Here, úY œ Y + represents the “extra point” in the one-point-compactification
of Y , and likewise for úX œ X+.

Clearly g is a bijection because f is. Let us show that U µ X+ is open if
and only if g(U) µ Y + is open.

1. If úX ”œ U , then úY ”œ g(U). But because f is a homeomorphism,
g(U) = f(U) is open if and only if U fl X = U is open.

2. If úX œ U , then úY œ g(U). This means that U fl X = KC (where the
complement is taken in X) for some compact, closed K µ X. But because f
is a homeomorphism, K µ X is compact and closed if and only if f(K) µ Y
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is also compact and closed. Thus f(U) fl Y is the complement of a closed,
compact subspace of Y if and only if U fl X is the complement of a closed,
compact subspace of X. This completes the proof.


