
Lecture 23

Density, Interiors, Closures,
Neighborhoods

23.1 Closure
Definition 23.1.1. Fix a topological space X and let B µ X be a subset.1
Let

KB

be the collection of all closed subsets of X containing B.2 Then the closure

of B is defined to be
B :=

‹

KœKB

K.

In words, the closure of B is the set obtained by intersecting every closed
subset containing B.
Remark 23.1.2. Note that B is always a subset of B.
Remark 23.1.3. Note that B is a closed subset of X. This is because the
intersection of closed subsets is always closed.
Remark 23.1.4. If B µ X is closed, then B = B. To see this, note that B
is an element of K because B is closed. Hence

‹

KœK

K = B fl
Q

a
‹

KœK,K ”=B

K

R

b .

1It could be any kind of subset: open, closed, neither!
2Note that X is an element of KB .
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Figure 23.1: An open ball on the right; its closure (a closed ball) on the left.

But this righthand side is a subset of B because it is obtained by intersecting
B with some other set. In particular,

B µ B.

Because B µ B (for any kind of B), we conclude that B = B.

Example 23.1.5. If B = ÿ, then B = ÿ. If B = X, then B = X.

Exercise 23.1.6. Let X = Rn (with the standard topology). Let B =
Ball(0, r) be the open ball of radius r. Show that the closure of B is the
closed ball of radius r; that is,

B = {x œ Rn such that d(x, 0) Æ r .}

Proof. You showed in your homework that if K µ X is closed and if x1, . . .
is a sequence in K converging to some x œ X, then x is in fact an element
of K.

Choose a point x of distance r from the origin. And choose also an
increasing sequence of positive real numbers t1, t2, . . . converging to 1.3 Then
the sequence

xi = tix

is a sequence in B converging to x. If K ∏ B, then the xi define a sequence
in K; moreover, if K is closed, the limit x is in K. Thus x œ K for any
closed subset containing B. In particular, x is in the intersection of all such
K. Thus x œ B. This shows that the closed ball of radius r is contained in
B.

3For example, you could take ti = i/(i + 1).
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On the other hand, consider the function f : Rn æ R given by d(0, ≠);
that is, the “distance to the origin” function. We see that f≠1([0, r]) is equal
to the closed ball of radius r—in particular, this closed ball is a closed subset
of Rn, and it obviously contains Ball(0, r). This shows that B is a subset of
the closed ball of radius r (because B can be expressed as the intersection of
this closed ball with other sets). We are finished.

Exercise 23.1.7. Suppose f : X æ Y is a continuous function, and let
B µ X be a subset. Show that

f(B) µ f(B).

In English: The image of the closure of B is contained in the closure of the
image of B.

Proof. Let C be the collection of closed subsets of Y containing f(B). Then

f≠1(f(B)) = f≠1

Q

a
‹

CœC

C

R

b

by definition of closure. We further have:

f≠1

Q

a
‹

CœC

C

R

b =
‹

CœC

f≠1(C).

Now, because f is continuous, we know that f≠1(C) is closed for every C œ C.
Moreover, because f(B) µ C, we see that B µ f≠1(C). We conclude that
for every C œ C, f≠1(C) œ K. Thus

‹

KœK

K µ
‹

CœC

f≠1(C).

The lefthand side is the definition of B. The righthand side is f≠1(f(B)).
We are finished.

Remark 23.1.8. It is not always true that f(B) is equal to f(B). For ex-
ample, let B = X = Ball(0, r), and let f : X æ R2 be the inclusion. Then
f(B) = X, while f(B) is the closed ball of radius r.
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Exercise 23.1.9. Find an example of a continuous function p : Rn æ R
such that

{x such that p(x) < t},

does not equal
{x such that p(x) Æ t}.

Example 23.1.10. Let B µ R2 be the following subset:

B = {(x1, x2) such that x1 > 0 and x2 = sin(1/x1)} µ R2.

This is not a closed subset of R2. I claim

B = B
€

{(x1, x2) such that x1 = 0 and x2 œ [≠1, 1]}.

That is, B is equal to the so-called topologist’s sine curve.
Let us call the righthand side S for the time being. First, I claim that

S µ B. Indeed, fix some point (0, T ) œ S \ B. Then there is an unbounded,
increasing sequence of real numbers t1, t2, . . . for which sin(ti) = T ; let si =
1/ti. Then the sequence of points

xi = (si, sin(1/si)) = (si, T )

converges to (0, T ), while each xi is an element of B. In particular, (0, T ) is
contained in any closed subset containing B. This shows S µ B.

To complete the proof, it su�ces to show that S is closed. For this,
because R2 is a metric space, it su�ces to show that any convergent sequence
contained in S has a limit contained in S. So let x1, x2, . . . be a sequence in
S.

Suppose that the limit x œ R2 has the property that the 1st coordinate is
non-zero. There is a unique point in S with a given non-zero first coordinate
t, namely (t, sin(1/t)). Moreover, because the function t ‘æ sin(t/1) is con-
tinuous, if ti = fi1(xi) converges to t, we know that (ti, sin(1/ti)) converges
to (t, sin(1/t)). So the limit is in S.

If on the other hand the first coordinate of x is equal to zero, let us ex-
amine the second coordinates fi2(x1), . . .. By continuity of fi2, the sequence
fi2(x1), fi2(x2), . . . converges to some T ; because each xi has a second coor-
dinate in [≠1, 1], and because [≠1, 1] µ RR is closed, we conclude that the
limit T is also contained in [≠1, 1]. Hence the limit of the sequence x1, . . . ,
is the point (0, T ), and (0, T ) œ S.

Because any sequence in S with a limit in R2 has limit in S, S is closed.
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23.2 Interiors
Definition 23.2.1. Let X be a topological space and fix B µ X. Let UB

denote the collection of open subsets of X that are contained in B. Then
the interior of B is defined to be the union

int(B) =
€

UœUB

U.

Remark 23.2.2. For any B, we have that int(B) µ B. Moreover, int(B) is
an open subset of both B and of X.
Remark 23.2.3. If B is open, then int(B) = B. This is because B œ UB,
so

int(B) =
€

UœUB

U = B fi
Q

a
€

U ”=B,UœUB

U

R

b

meaning int(B) contains B (because int(B) is a union of B with possibly
other sets). Thus we have that int(B) µ B µ int(B), meaning int(B) = B.
Example 23.2.4. We have that int(ÿ) = ÿ and int(X) = X.
Example 23.2.5. Let X = Rn and let B be the closed ball of radius r. Then
int(B) = Ball(0, r) is the open ball of radius r.

To see this, we note that Ball(0, r) is open and contained in B, so
Ball(0, r) µ int(B) by definition of interior. Because int(B) µ B, it suf-
fices to show that no other point of B (i.e., no point in B \ Ball(0, r)) is
contained in the interior of B.

So fix y œ B \ Ball(0, r), meaning y is a point of exactly distance r away
from the origin. It su�ces to show that there is no open ball containing y
and contained in B; for then there is no U œ U for which y œ U .

Well, for any ” > 0, Ball(y, ”) µ R2 contains some point of distance > r
from the origin. So Ball(y, ”) is never contained in B. This completes the
proof.

23.3 Neighborhoods
Definition 23.3.1. Let X be a space and let x an element of X. A subset
A µ X is called a neighborhood of x if there exists some open U µ X with
x œ U for which U µ A.

When A is also open, we say A is an open neighborhood of x.
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Example 23.3.2. Let U be an open subset containing x. Then the closure
U is a neighborhood of x.

Remark 23.3.3. In topology, we use the word “neighborhood” usually when
we’re being lazy. “Neighborhood of x” is shorter than saying “subset with
wiggle room about x.”

Note that a neighborhood of x need not be an open subset.

23.4 Density
Definition 23.4.1. Let X be a topological space and fix a subset B µ X.
We say that B is dense in X if B = X.

Prove the following:

Proposition 23.4.2. Fix B µ X. The following are equivalent:

1. B is dense in X.

2. For every non-empty open U µ X, U fl B ”= ÿ.

3. For every x œ X, and every neighborhood A of x in X, we have that
A fl B ”= ÿ.

4. For every x œ X, and every open neighborhood A of x in X, we have
that A fl B ”= ÿ.

Proposition 23.4.3. Q µ R is dense.

Proposition 23.4.4. R \ Q is dense in R.

Exercise 23.4.5. For each of the following examples of subsets of R2, identify
the closure, the interior, and the boundary. Which of these is dense?

1. B = {(x1, x2) such that x1 ”= 0 }.

2. B = t
(a,b)œZ◊Z(a ≠ 1, a + 1) ◊ (b ≠ 1, b + 1).

3. B = {(x1, x2) such that at least one of the coordinates is rational}.
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Solutions to Lecture 23 Propositions
Proof of Proposition 23.4.2. There is a mistake in this problem: Condition
2 should say that for every non-empty U µ X, we have U fl B ”= ÿ.

1 =∆ 2. Proof by contrapositive. Suppose that there is some non-empty
open U µ X such that U fl B = ÿ. Then UC is closed while UC ∏ B, so
the closure of B is contained in UC by definition of closure. In particular, B
does not contain U , so could not equal all of X.

2 =∆ 4. This is obvious, as if A is an open neighborhood of x, then A
is a non-empty open subset of X.

4 =∆ 3. Given A a neighborhood of x, let U µ A be the open subset
containing x (guaranteed by the definition of neighborhood). Then U flB ”= ÿ
by 4, so A fl B ∏ U fl B ”= ÿ.

3 =∆ 1. Clearly B µ X always, so we must show that X µ B. Let
K µ X be a closed subset containing B. Then KC is open. If KC is non-
empty, choose x œ KC , and note that KC is a neighborhood of x. Thus by
3, KC fl B ”= ÿ; this contradicts the fact that B µ K.

Proof of Proposition 23.4.3. Let x œ R be a real number, and for every inte-
ger n Ø 1, let xn be any rational number in the interval (x ≠ 1/n, x + 1/n).
Then the sequence xn converges to x. By the sequence criterion for closure,
we thus see that any real number is in the closure of Q.

Proof of Proposition 23.4.4. Same exact proof, except choose each xn to be
any irrational number in the interval (x ≠ 1/n, x + 1/n).

Proof of Proposition ??. int(B) is open in X because it is a union of open
sets. (And unions of open sets are always open by definition of topology.) It
is open in B because

int(B) fl B = int(B),

and by definition of subspace topology, a subset of B is open if and only if
it is an intersection of B with an open subset (like int(B)) of X.

Finally, int(B) µ B because int(B) is a union of subsets of B.

Proof of Proposition ??. If B is open, then obviously B œ U, while U œ
U =∆ U µ B, so t

UœU U µ B while B µ t
UœU U . Hence B = int(B).

On the other hand, if B = int(B), then B is a union t
UœU U of open

subsets of X; hence B is an open subset of X.


