Lecture 23

Density, Interiors, Closures, Neighborhoods

23.1 Closure

Definition 23.1.1. Fix a topological space X and let $B \subset X$ be a subset.¹ Let

 \mathfrak{K}_B

be the collection of all closed subsets of X containing B^{2} . Then the *closure* of B is defined to be

$$\overline{B} := \bigcap_{K \in \mathcal{K}_B} K$$

In words, the closure of B is the set obtained by intersecting every closed subset containing B.

Remark 23.1.2. Note that *B* is always a subset of \overline{B} .

Remark 23.1.3. Note that \overline{B} is a closed subset of X. This is because the intersection of closed subsets is always closed.

Remark 23.1.4. If $B \subset X$ is closed, then $\overline{B} = B$. To see this, note that B is an element of \mathcal{K} because B is closed. Hence

$$\bigcap_{K \in \mathcal{K}} K = B \cap \left(\bigcap_{K \in \mathcal{K}, K \neq B} K\right).$$

¹It could be any kind of subset: open, closed, neither!

²Note that X is an element of \mathcal{K}_B .

Figure 23.1: An open ball on the right; its closure (a closed ball) on the left.

But this righthand side is a subset of B because it is obtained by intersecting B with some other set. In particular,

 $\overline{B} \subset B.$

Because $B \subset \overline{B}$ (for any kind of B), we conclude that $B = \overline{B}$.

Example 23.1.5. If $B = \emptyset$, then $\overline{B} = \emptyset$. If B = X, then $\overline{B} = X$.

Exercise 23.1.6. Let $X = \mathbb{R}^n$ (with the standard topology). Let B = Ball(0, r) be the open ball of radius r. Show that the closure of B is the closed ball of radius r; that is,

$$\overline{B} = \{ x \in \mathbb{R}^n \text{ such that } d(x, 0) \le r . \}$$

Proof. You showed in your homework that if $K \subset X$ is closed and if x_1, \ldots is a sequence in K converging to some $x \in X$, then x is in fact an element of K.

Choose a point x of distance r from the origin. And choose also an increasing sequence of positive real numbers t_1, t_2, \ldots converging to 1.³ Then the sequence

$$x_i = t_i x$$

is a sequence in B converging to x. If $K \supset B$, then the x_i define a sequence in K; moreover, if K is closed, the limit x is in K. Thus $x \in K$ for any closed subset containing B. In particular, x is in the intersection of all such K. Thus $x \in \overline{B}$. This shows that the closed ball of radius r is contained in \overline{B} .

³For example, you could take $t_i = i/(i+1)$.

On the other hand, consider the function $f : \mathbb{R}^n \to \mathbb{R}$ given by d(0, -); that is, the "distance to the origin" function. We see that $f^{-1}([0, r])$ is equal to the closed ball of radius r—in particular, this closed ball is a closed subset of \mathbb{R}^n , and it obviously contains Ball(0, r). This shows that \overline{B} is a subset of the closed ball of radius r (because \overline{B} can be expressed as the intersection of this closed ball with other sets). We are finished. \Box

Exercise 23.1.7. Suppose $f : X \to Y$ is a continuous function, and let $B \subset X$ be a subset. Show that

$$f(\overline{B}) \subset \overline{f(B)}.$$

In English: The image of the closure of B is contained in the closure of the image of B.

Proof. Let \mathcal{C} be the collection of closed subsets of Y containing f(B). Then

$$f^{-1}(\overline{f(B)}) = f^{-1}\left(\bigcap_{C \in \mathfrak{C}} C\right)$$

by definition of closure. We further have:

$$f^{-1}\left(\bigcap_{C\in\mathfrak{C}}C\right) = \bigcap_{C\in\mathfrak{C}}f^{-1}(C).$$

Now, because f is continuous, we know that $f^{-1}(C)$ is closed for every $C \in \mathbb{C}$. Moreover, because $f(B) \subset C$, we see that $B \subset f^{-1}(C)$. We conclude that for every $C \in \mathbb{C}$, $f^{-1}(C) \in \mathcal{K}$. Thus

$$\bigcap_{K \in \mathcal{K}} K \subset \bigcap_{C \in \mathcal{C}} f^{-1}(C).$$

The lefthand side is the definition of \overline{B} . The righthand side is $f^{-1}(\overline{f(B)})$. We are finished.

Remark 23.1.8. It is not always true that $f(\overline{B})$ is equal to $\overline{f(B)}$. For example, let B = X = Ball(0, r), and let $f : X \to \mathbb{R}^2$ be the inclusion. Then $f(\overline{B}) = X$, while $\overline{f(B)}$ is the closed ball of radius r.

Exercise 23.1.9. Find an example of a continuous function $p : \mathbb{R}^n \to \mathbb{R}$ such that

$$\{x \text{ such that } p(x) < t\},\$$

does not equal

$$\{x \text{ such that } p(x) \leq t\}.$$

Example 23.1.10. Let $B \subset \mathbb{R}^2$ be the following subset:

$$B = \{(x_1, x_2) \text{ such that } x_1 > 0 \text{ and } x_2 = \sin(1/x_1)\} \subset \mathbb{R}^2.$$

This is not a closed subset of \mathbb{R}^2 . I claim

$$\overline{B} = B \bigcup \{ (x_1, x_2) \text{ such that } x_1 = 0 \text{ and } x_2 \in [-1, 1] \}.$$

That is, \overline{B} is equal to the so-called topologist's sine curve.

Let us call the righthand side S for the time being. First, I claim that $S \subset \overline{B}$. Indeed, fix some point $(0,T) \in S \setminus B$. Then there is an unbounded, increasing sequence of real numbers t_1, t_2, \ldots for which $\sin(t_i) = T$; let $s_i = 1/t_i$. Then the sequence of points

$$x_i = (s_i, \sin(1/s_i)) = (s_i, T)$$

converges to (0, T), while each x_i is an element of B. In particular, (0, T) is contained in any closed subset containing B. This shows $S \subset \overline{B}$.

To complete the proof, it suffices to show that S is closed. For this, because \mathbb{R}^2 is a metric space, it suffices to show that any convergent sequence contained in S has a limit contained in S. So let x_1, x_2, \ldots be a sequence in S.

Suppose that the limit $x \in \mathbb{R}^2$ has the property that the 1st coordinate is non-zero. There is a unique point in S with a given non-zero first coordinate t, namely $(t, \sin(1/t))$. Moreover, because the function $t \mapsto \sin(t/1)$ is continuous, if $t_i = \pi_1(x_i)$ converges to t, we know that $(t_i, \sin(1/t_i))$ converges to $(t, \sin(1/t))$. So the limit is in S.

If on the other hand the first coordinate of x is equal to zero, let us examine the second coordinates $\pi_2(x_1), \ldots$ By continuity of π_2 , the sequence $\pi_2(x_1), \pi_2(x_2), \ldots$ converges to some T; because each x_i has a second coordinate in [-1, 1], and because $[-1, 1] \subset RR$ is closed, we conclude that the limit T is also contained in [-1, 1]. Hence the limit of the sequence x_1, \ldots , is the point (0, T), and $(0, T) \in S$.

Because any sequence in S with a limit in \mathbb{R}^2 has limit in S, S is closed.

23.2 Interiors

Definition 23.2.1. Let X be a topological space and fix $B \subset X$. Let \mathcal{U}_B denote the collection of open subsets of X that are contained in B. Then the *interior* of B is defined to be the union

$$int(B) = \bigcup_{U \in \mathfrak{U}_B} U.$$

Remark 23.2.2. For any B, we have that $int(B) \subset B$. Moreover, int(B) is an open subset of both B and of X.

Remark 23.2.3. If *B* is open, then int(B) = B. This is because $B \in \mathcal{U}_B$, so

$$int(B) = \bigcup_{U \in \mathfrak{U}_B} U = B \cup \left(\bigcup_{U \neq B, U \in \mathfrak{U}_B} U\right)$$

meaning int(B) contains B (because int(B) is a union of B with possibly other sets). Thus we have that $int(B) \subset B \subset int(B)$, meaning int(B) = B.

Example 23.2.4. We have that $int(\emptyset) = \emptyset$ and int(X) = X.

Example 23.2.5. Let $X = \mathbb{R}^n$ and let *B* be the closed ball of radius *r*. Then int(B) = Ball(0, r) is the open ball of radius *r*.

To see this, we note that Ball(0,r) is open and contained in B, so $\text{Ball}(0,r) \subset int(B)$ by definition of interior. Because $int(B) \subset B$, it suffices to show that no other point of B (i.e., no point in $B \setminus \text{Ball}(0,r)$) is contained in the interior of B.

So fix $y \in B \setminus \text{Ball}(0, r)$, meaning y is a point of exactly distance r away from the origin. It suffices to show that there is no open ball containing y and contained in B; for then there is no $U \in \mathcal{U}$ for which $y \in U$.

Well, for any $\delta > 0$, $\operatorname{Ball}(y, \delta) \subset \mathbb{R}^2$ contains some point of distance > r from the origin. So $\operatorname{Ball}(y, \delta)$ is never contained in B. This completes the proof.

23.3 Neighborhoods

Definition 23.3.1. Let X be a space and let x an element of X. A subset $A \subset X$ is called a *neighborhood* of x if there exists some open $U \subset X$ with $x \in U$ for which $U \subset A$.

When A is also open, we say A is an open neighborhood of x.

Example 23.3.2. Let U be an open subset containing x. Then the closure \overline{U} is a neighborhood of x.

Remark 23.3.3. In topology, we use the word "neighborhood" usually when we're being lazy. "Neighborhood of x" is shorter than saying "subset with wiggle room about x."

Note that a neighborhood of x need not be an open subset.

23.4 Density

Definition 23.4.1. Let X be a topological space and fix a subset $B \subset X$. We say that B is *dense* in X if $\overline{B} = X$.

Prove the following:

Proposition 23.4.2. Fix $B \subset X$. The following are equivalent:

- 1. B is dense in X.
- 2. For every non-empty open $U \subset X$, $U \cap B \neq \emptyset$.
- 3. For every $x \in X$, and every neighborhood A of x in X, we have that $A \cap B \neq \emptyset$.
- 4. For every $x \in X$, and every open neighborhood A of x in X, we have that $A \cap B \neq \emptyset$.

Proposition 23.4.3. $\mathbb{Q} \subset \mathbb{R}$ is dense.

Proposition 23.4.4. $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} .

Exercise 23.4.5. For each of the following examples of subsets of \mathbb{R}^2 , identify the closure, the interior, and the boundary. Which of these is dense?

- 1. $B = \{(x_1, x_2) \text{ such that } x_1 \neq 0 \}.$
- 2. $B = \bigcup_{(a,b) \in \mathbb{Z} \times \mathbb{Z}} (a-1, a+1) \times (b-1, b+1).$
- 3. $B = \{(x_1, x_2) \text{ such that at least one of the coordinates is rational}\}.$

Solutions to Lecture 23 Propositions

Proof of Proposition 23.4.2. There is a mistake in this problem: Condition 2 should say that for every non-empty $U \subset X$, we have $U \cap B \neq \emptyset$.

 $1 \implies 2$. Proof by contrapositive. Suppose that there is some non-empty open $U \subset X$ such that $U \cap B = \emptyset$. Then U^C is closed while $U^C \supset B$, so the closure of B is contained in U^C by definition of closure. In particular, \overline{B} does not contain U, so could not equal all of X.

 $2 \implies 4$. This is obvious, as if A is an open neighborhood of x, then A is a non-empty open subset of X.

 $4 \implies 3$. Given A a neighborhood of x, let $U \subset A$ be the open subset containing x (guaranteed by the definition of neighborhood). Then $U \cap B \neq \emptyset$ by 4, so $A \cap B \supset U \cap B \neq \emptyset$.

 $3 \implies 1$. Clearly $\overline{B} \subset X$ always, so we must show that $X \subset \overline{B}$. Let $K \subset X$ be a closed subset containing B. Then K^C is open. If K^C is nonempty, choose $x \in K^C$, and note that K^C is a neighborhood of x. Thus by $3, K^C \cap B \neq \emptyset$; this contradicts the fact that $B \subset K$.

Proof of Proposition 23.4.3. Let $x \in \mathbb{R}$ be a real number, and for every integer $n \geq 1$, let x_n be any rational number in the interval (x - 1/n, x + 1/n). Then the sequence x_n converges to x. By the sequence criterion for closure, we thus see that any real number is in the closure of \mathbb{Q} .

Proof of Proposition 23.4.4. Same exact proof, except choose each x_n to be any *irrational* number in the interval (x - 1/n, x + 1/n).

Proof of Proposition ??. int(B) is open in X because it is a union of open sets. (And unions of open sets are always open by definition of topology.) It is open in B because

$$int(B) \cap B = int(B),$$

and by definition of subspace topology, a subset of B is open if and only if it is an intersection of B with an open subset (like int(B)) of X.

Finally, $int(B) \subset B$ because int(B) is a union of subsets of B.

Proof of Proposition ??. If B is open, then obviously $B \in \mathcal{U}$, while $U \in \mathcal{U} \implies U \subset B$, so $\bigcup_{U \in \mathcal{U}} U \subset B$ while $B \subset \bigcup_{U \in \mathcal{U}} U$. Hence B = int(B).

On the other hand, if B = int(B), then B is a union $\bigcup_{U \in \mathcal{U}} U$ of open subsets of X; hence B is an open subset of X.