Writing Assignment 4

Due Friday, September 18, 11:59 PM

Some students learn what a continuous function is as the following: "A function is continuous if its graph can be drawn without ever lifting your pen."

This of course is kind of false, because something like $\tan (x)$ is continuous everywhere it's defined, but clearly you can't draw the graph of $\tan (x)$ without every lifting your pen. (Try it!)

Regardless, you may have also learned the "epsilon-delta," or " $\epsilon-\delta$ " definition of continuity as well: That a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called continuous if for every $x \in \mathbb{R}$, and for every $\epsilon>0$, there exists $\delta>0$ so that

$$
\left|x-x^{\prime}\right|<\delta \Longrightarrow\left|f(x)-f\left(x^{\prime}\right)\right|<\epsilon
$$

Note that in this assignment, we are not using any notion of open balls or topological space. This is a writing assignment you could have received before ever taking this course, and this is how I would like you to treat it.

Prompt. Explain to me how, or if, this intuition of "never lifting your pen" (which is a non-mathematical, imprecise notion) agrees with, or is compatible with, the " $\epsilon-\delta$ " definition for compatibility.

This is another assignment that takes a long time. I would suggest one hour just exploring the prompt, especially making sure you understand the $\epsilon-\delta$ definition (trying out examples of different f-like $f(x)=x$, and $f(x)=$ x^{2} - and different values of ϵ-like $\epsilon=1,0.1,0.01, \ldots$ may be helpful).

Then, spend the next half hour writing.

