Writing Assignment 8

Due Friday, October 16, 11:59 PM

You have probably heard of a shape called a cylinder before. (For example, the cardboard core of a roll of toilet paper is a cylinder.)

Another way to describe a cylinder is as the image of the function

$$
j:[-1,1] \times[0,2 \pi] \rightarrow \mathbb{R}^{3}, \quad(t, \theta) \mapsto(\cos (\theta), \sin (\theta), t)
$$

(Sometimes, mathematicians will demand that the cylinder be infinitely tall, but we'll ignore that here.)

Let's say all that somebody had was a piece of paper and some glue. How would you instruct them to construct a cylinder?

Now, let P be the set of points comprising that sheet of paper. If you like, you can model it as some rectangle inside of \mathbb{R}^{2}. How would you describe the cylinder using an equivalence relation on P ?

The key of this assignment is to show me that you understand how equivalence relations can be used in constructing new shapes.

