
Extra Credit Exam I Quizzes (Deadline April
1, 10:30 AM)
For extra credit, you may take up to four extra credit quizzes. The four
quizzes will be on the topics of:

1. Implicit Di�erentiation,

2. Minima and Maxima,

3. Related Rates, and

4. Taylor Polynomials.

I strongly encourage you to study and take all four.
Points. Each quiz will be worth at most 10 points, and these points will

be added directly to your Exam I score. So for example, if you scored 60
points on the exam (since the exam is out of 144 points, 60 points is roughly
42%), you have a chance to change your grade to a maximum of 100 points
(which would be roughly 70%).

Deadline. Whichever quizzes you choose to take, you must take them
by April 1, 10:30 AM (to complete them by April 1, 10:40 AM).

Logistics. To take a quiz, you come to my o�ce hours. In my o�ce, I
will give you a quiz, and you must complete it within 10 minutes. If you
cannot come to my o�ce hours, email me, and we will schedule a time
for you to take the quiz. You do not need to take all four quizzes in one
sitting—you may come to my o�ce four separate times, for example, to take
the four quizzes. You may not repeat a quiz topic; so if you take four
quizzes, each quiz must be on a di�erent topic.

Prompt. In the pages that follow, I have given three examples of the
kinds of problems that will be on these extra credit quizzes. I have given
solutions to each example. The quiz will consist of a problem very similar to
the ones presented in this PDF file.



2 Implicit Di�erentiation Problems
(I) Using implicit di�erentiation, find the slope of the tangent line, at a

point (x, y), to the shape cut out by the equation

xe
y + ye

x = 0.

(II) Consider the shape
3yx

2 ≠ y
3 ≠ x

3 = 0.

Using implicit di�erentiation, find the slope of the tangent line to this
shape at a point (x, y).

(III) An ant is walking along a curve defined by the equation

cos(xy) + y cos(x) = x sin(y).

What is the slope of the ant’s path if the ant is at the point (x, y)?

2.1 Solutions
Remember, in implicit di�erentiation, we pretend y is a function of x, so we
can pretend y = f(x). When we di�erentiation terms involving y, this means
we’ll make frequent use of product and chain rules. For example,

(xy)Õ = (xf(x))Õ = x
Õ
f(x) + x · f

Õ(x) = x
Õ
y + xy

Õ = y + xy
Õ

Likewise,
(y2)Õ = (f(x)2)Õ = 2f(x)f Õ(x) = 2y · y

Õ
.

Note that we are substituting back y
Õ for f

Õ(x).
Often, to save time, we skip the step of pretending y = f(x) and just

quickly write (y2)Õ = 2y · y
Õ. It is up to you whether you want to do this

“time-saving” method or to carefully substitute f(x) for y and apply the
di�erentiation rules carefully.

(I) We have

(xe
y + ye

x)Õ = (xe
y)Õ + (ye

x)Õ (31)
= (x)Õ

e
y + x(ey)Õ + (y)Õ

e
x + y(ex)Õ (32)

= e
y + xe

y
y

Õ + y
Õ
e

x + ye
x (33)

= y
Õ(xe

y + e
x) + e

y + ye
x
. (34)
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Because xe
y + ye

x = 0, we know that (xe
y + ye

x)Õ = 0Õ = 0. So we
obtain

y
Õ = ≠e

y ≠ ye
x

xey + ex
.

(II)

0 = 0Õ = (3yx
2 ≠ y

3 ≠ x
3)Õ = (3yx

2)Õ ≠ (y3)Õ ≠ (x3)Õ (35)
= 3y

Õ(x2) + 3y · 2x ≠ 3y
2
y

Õ ≠ 3x
2 (36)

= 3y
Õ
1
x

2 ≠ y
2
2

+ 6xy ≠ 3x
2
. (37)

Hence
y

Õ = 2xy ≠ x
2

y2 ≠ x2 .

(III) Since the curve is defined by

cos(xy) + y cos(x) = x sin(y)

we also know
0 = cos(xy) + y cos(x) ≠ x sin(y). (38)

Taking derivatives as usual, we find

(cos(xy) + y cos(x) ≠ x sin(y))Õ = (cos(xy))Õ + (y cos(x))Õ ≠ (x sin(y))Õ

(39)
= ≠ sin(xy) · (xy)Õ

+(y)Õ cos(x) + y(cos(x))Õ

≠(x)Õ sin(y) ≠ x(sin(y))Õ

(40)
= ≠ sin(xy) · (x · y

Õ + y)
+y

Õ cos(x) + y · (≠ sin(x))
≠ sin(y) ≠ x · cos(y)yÕ

(41)
= y

Õ(≠x sin(xy) + cos(x) ≠ x cos(y))
+(≠y sin(xy) ≠ y sin(x) ≠ sin(y)).

(42)
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Because of (38), we know that 0 = 0Õ = (cos(xy)+y cos(x)≠x sin(y))ÕÕ,
so we from (42) we conclude

0 = y
Õ(≠x sin(xy)+cos(x)≠x cos(y))+(≠y sin(xy)≠y sin(x)≠sin(y)).

Isolating y
Õ, we find

y
Õ = y sin(xy) + y sin(x) + sin(y)

≠x sin(xy) + cos(x) ≠ x cos(y) .
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3 Min/Max Problems
These Min/Max problems are a little tougher than the ones from lab, because
you have to find the function that you’re optimizing—the function is not just
given to you. Moreover, the function you want to optimize often depends on
more than one input variable (for example, the area depends on both length
and width), so you have to find a relationship that allows you to express the
function using only one input variable.

(I) Bena is making a rectangular shape out of piping. One side of this
rectangular shape must made of (pricier) copper, worth 2 dollars per
foot of piping. The other three sides must be made of PVC (a type
of plastic), worth about 50 cents per foot of piping. The piping must
enclose a region with 30 square feet.

(a) How long should the copper piping be to minimize cost?
(b) What is this minimized cost?

(II) Consider the set of points (x, y) satisfying y = 3x + 2. (This set of
points forms a line, as you know.)

(a) Which point on this line is closest to the origin of the plane?
(b) What is the distance of that point from the origin?

(III) Melody is making a rectangle out of 40 centimeters of string.

(a) What are the length and width of the rectangle of maximal area
she can make?

(b) What is the maximal area she can enclose in her rectangle?

3.1 Solutions
(I) Let’s set up the problem. Let’s call w the width of the rectangular

region, and l the length. Then we know that

Area = wl. (43)
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How much is the cost? Well, there are four sides to a rectangle. Let’s
say that a side of length w is made of copper6, while the other three
sides are made of PVC. Then the total cost is given by

Cost = (2 dollars/ft)◊(w ft of copper)+(0.5 dollars/ft)◊(w + 2l feet of PVC).

Or, getting rid of the words on the right, we have

Cost = 2w + 0.5 ◊ (w + 2l). (44)

Part (a) is asking us for the length of copper, which we chose to be w.
So l seems like a bit of a distraction. Let’s remember the equation for
area (43), and note that we need the area to be 30. In other words,
(43) and the problem’s constraints tell us

30 = wl.

So whatever l is, we know

l = 30/w. (45)

So—because (a) is asking us for the length w of copper—let’s eliminate
the appearance of the distracting l by substiting (45) into (44), to find:

Cost = 2w + 0.5 ◊ (w + 230
w

).

Simplifying, we find

Cost(w) = w.5w + 30
w

. (46)

Now, we want to minimize cost, so at this point we see that we are
looking for the absolute minimum of the function in (46). To find this
minimum, let’s look for critical points. To look for critical points, we
must find out where CostÕ(w) = 0. Well,

CostÕ(w) = 2.5 ≠ 30
w2 .

6If you wanted, you could instead call l the length of the copper; then the roles of w
and l will be swapped from hereon.
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If we want CostÕ(w) = 0, then we find

2.5 = 30
w2

meaning we want
w

2 = 30
2.5 = 12.

So the only critical points are at w =
Ô

12 and w = ≠
Ô

12. Note that
because we are looking for a physical length of pipe, w cannot be a
negative number, so we end up with only one

critical point given by w =
Ô

12. (47)

We must now check whether this is indeed a minimum. (After all,
what if the cost function doesn’t even have minima?) For this, let’s
check the concavity of the cost function. We find

CostÕÕ(w) = 0 + 2 · 30
w3 = 60

w3 .

This is always positive so long as w is positive (which w must be, being
the length of something). In other words, Cost is always concave up as
a function of w. Not only can we now conclude that our critical point
from (47) is a local minimum, we conclude it is an absolute minimum
because our function Cost(w) is always concave up! Thus w =

Ô
12 is

an absolute minimum.
So we can confidently say: Answer to (a): The length of the copper
side must be

Ô
12 feet.

To find the answer to (b), we utilize the version of the Cost function
that’s easiest to evaluate using w—the one in (46). We find

Cost(
Ô

12) = 2.5
Ô

12 + 30Ô
12

(48)

= 2.5
Ô

12 + 30
Ô

12
12 (49)

= 2.5
Ô

12 + 5
2

Ô
12 (50)

= 5
Ô

12. (51)
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So the answer to (b) is 5
Ô

12 dollars. In real life, we would probably
round this to two decimal places.
If you wanted a decimal answer, you’d probably use a calculator to
find that this is about 17 dollars and 32 cents.

Remark 3.1 (The actual work you can show on an exam). If you
needed to show your work on an exam, it will probably su�ce to write
something like the following:

30 = wl (52)
l = 30/w (53)

Cost = 2w + 0.5 ◊ (w + 2l) (54)

= 2w + 0.5 ◊ (w + 230
w

) (55)

= 2.5w + 30
w

. (56)

CostÕ = 2.5 ≠ 30
w2 . (57)

(58)

CostÕ(w) = 0 =∆ 2.5 = 30
w2 (59)

=∆ w
2 = 30/2.5 = 60/5 = 12. (60)

so w =
Ô

12 (negative value of w doesn’t make sense). (61)

CostÕÕ(w) = 60
w3 (62)

positive for all w, so concave up, so crit pt is absolute maximum
(63)
(64)

(a):
Ô

12 feet of copper
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Cost(
Ô

12) = 2.5
Ô

12 + 30Ô
12

(65)

= 2.5
Ô

12 + 30
Ô

12
12 (66)

= (2.5 + 2.5)
Ô

12 (67)
= 5

Ô
12. (68)

(b): 5
Ô

12 dollars

Remark 3.2. You could set up the problem in other ways. For ex-
ample, you could have gotten rid of w, and then solved for the mini-
mizing l. You’d eventually have to find the minimizing w again using
the equation 30 = wl, but it would still be correct.
Instead of using w and l, the dimensions of the rectangle, you could
have also used variables like C and P to represent the length of copper
and PVC pipe, respectively. Then the two main equations to set you up
would be 30 = CP and Cost = 2C+0.5C+0.5(P ≠C)/2+0.5(P ≠C)/2;
note that in the cost equation, I am using that there are four sides to
a rectangle (so there are four terms being added) of length C and of
length (P ≠ C)/2. This way is a bit more complicated, as you can see,
to set up; but the end answer won’t change for C = w.

(II) Set-up: Distance to the origin is given by the function
Ò

x2 + y2. (69)

y and x must satisfy a relation called y = 3x + 2, so we substitute this
relation into (69) to obtain

Ò
x2 + (3x + 2)2.

We must minimize this function. Now, note that to minimize the
square root of BLAH, it su�ces to minimize BLAH. (The smaller the
number, the smaller the square root.) So let’s minimize instead

x
2 + (3x + 2)2

.

Simplifying, we must minimize the expression

f(x) = 10x
2 + 12x + 4.
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(The letter f was chosen arbitrarily.) To minimize this expression,
let’s take the derivative to find critical points:

f
Õ(x) = 20x + 12.

So the only critical point is at x = ≠12/20 = ≠3/5. Let’s check to see
if this is a minimum by finding concavity:

f
ÕÕ(x) = 20.

So yes, the entire function d is concave up, so the lone critical point
must be an absolute minimum.
So the x-coordinate ≠3/5 minimizes distance to the origin. Using (69),
we can recover the y-coordinate of the point we seek:

y = 3(≠3/5) + 2 = 1/5.

Answer to (a): The minimizing point has coordinates (≠3/5, 1/5)
Answer to (b): The minimizing distance is given by

Ò
x2 + y2 =

Ò
(≠3/5)2 + (1/5)2 =

Ò
10/25 =

Ô
10
5 = 1

5
Ô

10.

(Any of the last three expressions is acceptable; the last two are pre-
ferred.)

(III) We have 40 cm of string; so if our rectangle has width w and length l,
we know

40 = perimeter of rectangle2w + 2l. (70)
And we want to maximize area:

Area = wl. (71)

Well, let’s plug in the relationship given by (70) into the area function
to obtain:

Area = w · (20 ≠ w). (72)
(To spell this out: I saw that 2l = 40 ≠ 2w, so I saw that l = 20 ≠ w.
I substituted l for 20 ≠ w in the area function.) Hence

Area = 20w ≠ w
2
.
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Let’s find the critical points of this function of w. The derivative is
given by

AreaÕ = 20 ≠ 2w,

so there is a unique critical point given by w = 10. To check the
concavity, we compute:

AreaÕÕ = ≠2.

The area function is hence always concave down (as a function of w),
so the lone critical point we found must be not only a local maximum,
but a global one!
Answer to (a): w = 10. By the constraint equation (70), we also see
that l = 10. So this rectangle is in fact a square!
Answer to (b): Area is given by wl = (10)(10) = 100. Hence the
maximal area she can enclose is 100 centimeters squared.
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4 Related Rates Problems
(I) It is night, and a ball of light is falling. The height of the ball of

light is given by a function H(t) where t is in seconds, and H(t) is in
meters. 9 horizontal meters away is a pole of height 13 meters. The
pole (because of the light from the ball of light) casts a shadow of
length s(t).

(a) Express s(t) in terms of H(t) and H
Õ(t).

(b) If H(t) = 100 ≠ 4.9t
2, how fast is the shadow growing at t = 2?

(II) A spherical dome of radius R meters is being flooded with water. Later
in this course, you will see that if the water level inside the dome has
height h, then there are

fih(R2 ≠ h
2

3 )

cubic meters of water in the dome.

(a) If the water’s volume is increasing at 10 cubic meters per second,
and if the water level is 1 meter, how quickly is the water level
changing? Your answer should be in meters per second.

(b) If the water’s volume is still increasing at 10 cubic meters per
second, and if the water level is 2 meters, how quickly is the water
level changing?

(c) As the water level increases, is the rate of change of the water level
increasing or decreasing?

(III) When an earthquake occurs, certain surface waves called Raleigh waves
emanate from the epicenter of the earthquake at 3.4 kilometers per
second. Remember that the area of a circle of radius r is given by fir

2.

(a) After 10 seconds, how many square kilometers of land have been
a�ected by the Raleigh waves?

(b) When the Raleigh wave has traveled a kilometer, how quickly is the
area of a�ected land changing? Give your answers in kilometers
squared per second.
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4.1 Solutions
(I) Let’s draw a picture:

H(t)

13

9 s(t)

The picture depicts in the upper-left the ball of light at height H(t).
9 meters away is the pole of height 13 meters, and s(t) is the shadow
cast by the pole.
Using similar triangles, we see that

13
s(t) = H(t)

9 + s(t) .

We manipulate this equation (for example) as follows:

13
H(t)(9 + s(t)) = s(t) (73)

13 · 9
H(t) + s(t) 13

H(t) = s(t) (74)

13 · 9
H(t) = s(t) ≠ s(t) 13

H(t) (75)

13 · 9
H(t) = s(t)[1 ≠ 13

H(t) ] (76)

13 · 9
H(t)[1 ≠ 13

H(t) ]
= s(t) (77)

13 · 9
H(t) ≠ 13 = s(t) (78)
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So the Answer to (a) is s(t) = 13·9
H(t)≠13 .

Taking the derivative of s(t), we find

s
Õ(t) =

A
117

H(t) ≠ 13

BÕ

(79)

= ≠117
(H(t) ≠ 13)2 · H

Õ(t). (80)

Knowing that H(t) = 100 ≠ 4.9t
2, we have that

s
Õ(t) = ≠117

(H(t) ≠ 13)2 · H
Õ(t) (81)

= ≠117
(100 ≠ 4.9t2 ≠ 13)2 · (≠9.8t) (82)

= 117 · 9.8t

(87 ≠ 4.9t2)2 . (83)

Plugging in t = 2, we find

s
Õ(2) = 117 · 9.8t

(87 ≠ 4.9t2)2 (84)

= 117 · 9.8 · 2
(87 ≠ 4.9 · 4)2 (85)

= 117 · 9.8 · 2
(87 ≠ 19.6)2 (86)

= 117 · 9.8 · 2
(87 ≠ 19.6)2 (87)

= 117 · 9.8 · 2
(67.4)2 . (88)

(II) The dome’s radius R is constant. We find that

V
Õ(t) =

A

fih(R2 ≠ h
2

3 )
BÕ

(89)

=
A

fihR
2 ≠ fih

3

3

BÕ

(90)

= fih
Õ(t)R2 ≠ fih

2
h

Õ(t) (91)
= fih

Õ(t)(R2 ≠ h(t)2). (92)
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(a) We are told in the problem that V
Õ(t) = 10 and h(t) = 1. Thus we

find
10 = fih

Õ(t)(R2 ≠ 12).
Rearranging terms, we conclude

h
Õ(t) = 10

fi(R2 ≠ 1) .

(b) Using the same V
Õ(t), but this time plugging in h(t) = 2, we find

h
Õ(t) = 10

fi(R2 ≠ 4) .

(c) We see that
h

Õ(t) = 10
fi(R2 ≠ h(t)2) .

In other words, as h(t) is increasing, the denominator in the fraction
is decreasing—hence the rate of change of height, h

Õ(t), also increases
as h(t) increases.

(III) The region a�ected is a circle of radius r(t). According to the problem,
because Raleigh waves travel at a speed of 3.4 kilometers per second,

r(t) = 3.4t

where t is in seconds, and r(t) is in kilometers.
(a) The area a�ected is

fir(t)2 = fi(3.4 ◊ 10)2 = fi ◊ 3.4 ◊ 102

kilometers squared.
(b) The rate of change of area can be calculated as

1
fir(t)2

2Õ
= fi · 2r(t) · r

Õ(t). (93)

Note that we know r
Õ(t) = 3.4; and part (b) does not tell us how many

seconds the wave has traveled, but it does ask about the rate of change
of area when r(t) = 1. Hence we find

1
fir(t)2

2Õ
= fi · 2r(t) · r

Õ(t). (94)
= fi · 2 ◊ 1 · 3.4 (95)
= 6.8fi. (96)

The answer to part (b) is hence 6.8fi kilometers squared per second.
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5 Taylor Polynomial Problems
For each of the functions f(x) and each a indicated, find a degree 4 polyno-
mial T so that

1. f(a) = T (a),

2. f
Õ(a) = T

Õ(a),

3. f
ÕÕ(a) = T

ÕÕ(a),

4. f
(3)(a) = T

(3)(a),

5. f
(4)(a) = T

(4)(a).

Here are the functions:

(I) f(x) = sin(x) and a = fi/2.

(II) f(x) = e
x and a = 0.

(III) f(x) =
Ò

(x) and a = 4.

5.1 Solutions
(I) f(x) = sin(x) and a = fi/2.

We know (see the class notes from Lecture 18) that a Taylor polynomial
of degree 4 will be given by the formula

T (x) = f(a)+f
Õ(a)(x≠a)+f

ÕÕ(a)
2 (x≠a)2+f

(3)(a)
3! (x≠a)3+f

(4)(a)
4! (x≠a)4

.

First let’s note that since f(x) = sin(x), we have

f
Õ(x) = cos(x), f

ÕÕ(x) = ≠ sin(x), f
(3)(x) = ≠ cos(x), f

(4)(x) = sin(x).

Now let’s remember from trigonometry that sin(fi/2) = 1 and cos(fi/2) =
0. Thus we find

f(fi/2) = 1, f
Õ(fi/2) = 0, f

ÕÕ(fi/2) = ≠1, f
(3)(fi/2) = 0, f

(4)(fi/2) = 1.

Thus, we find

T (x) = 1 + ≠1
2 (x ≠ fi

2 )2 + 1
24(x ≠ fi

2 )4
.
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(II) f(x) = e
x and a = 0.

We must compute the derivatives of f at a = 0. We see

f
Õ(x) = e

x
, f

ÕÕ(x) = e
x
, f

(3)(x) = e
x
, f

(4)(x) = e
x
.

Hence

f
Õ(0) = 1, f

ÕÕ(0) = 1, f
(3)(0) = 1, f

(4)(0) = 1.

We conclude
T (x) = 1 + x + x

2

2 + x
3

6 + x
4

24 .

(III) f(x) =
Ò

(x) and a = 4.
We again compute the higher derivatives of f . Let’s write f(x) =Ô

x = x
1/2. Using the power rule over and over, we find

f
Õ(x) = (x1/2)Õ (97)

= 1
2x

≠1/2 (98)

= 1
2

1Ô
x

. (99)

f
ÕÕ(x) = (1

2x
≠1/2)Õ (100)

= ≠1
4 x

≠3/2 (101)

= ≠1
4

1
Ô

x
3 . (102)

f
(3)(x) = (≠1

4 x
≠3/2)Õ (103)

= 3
8x

≠5/2 (104)

= 3
8

1
Ô

x
5 . (105)

f
(4)(x) = (3

8x
≠5/2)Õ (106)

= ≠15
16 x

≠7/2 (107)

= ≠15
16

1
Ô

x
7 . (108)

17



Thus, we have

f(4) =
Ô

4 (109)
= 2. (110)

f
Õ(4) = 1

2
1Ô
4

(111)

= 1
4 . (112)

f
ÕÕ(4) = ≠1

4
1

Ô
43 (113)

= ≠1
4

1
8 (114)

= ≠1
32 . (115)

f
(3)(4) = 3

8
1

Ô
45 (116)

= 3
8

1
32 (117)

= 3
256 . (118)

f
(4)(x) = ≠15

16
1

Ô
47 (119)

= ≠15
16

1
128 (120)

= ≠15
2048 . (121)

Thus we have

T (x) = 2 + 1
4(x ≠ 4) + 1

2
≠1
32 (x ≠ 4)2 + 1

3!
3

256(x ≠ 4)3 + 1
4!

≠15
2048(x ≠ 4)4

(122)

= 2 + 1
4(x ≠ 4) + ≠1

64 (x ≠ 4)2 + 1
512(x ≠ 4)3 + 1

4!
≠5

16384(x ≠ 4)4
.

(123)
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