Extra Credit Writing 2 (Deadline February 26th, 11:59 PM)

This is worth at most 5 extra credit points.
Background. Here is something interesting: If you take the derivative of $\sin (x)$ enough times, you get back $\sin (x)$ again!

$$
\begin{align*}
\sin ^{\prime} & =\cos , \tag{14}\\
(\cos)^{\prime} & =-\sin , \tag{15}\\
(-\sin)^{\prime} & =-(\sin)^{\prime}=-(\cos)=-\cos , \tag{16}\\
(-\cos)^{\prime} & =-(\cos)^{\prime}=-(-\sin)=\sin . \tag{17}
\end{align*}
$$

That is, if you take the derviative four times, you get back sin. Another way to say this is that the fourth derivative of $\sin (x)$ is $\sin (x)$ again.

Prompt. Can you find other functions that have the property that their nth derivatives are themselves? For example, can you find

1. A function whose derivative is itself? (This is the case $n=1$.)
2. A function whose second derivative is itself? (This is the case $n=2$.)
3. How about for third derivatives?
4. Is there a function other than sin whose fourth derivative is itself? How many can you find?

And how about for other n ?
Explore, discuss, have fun!
Grading. This is a writing assignment to get your juices flowing. You will not be graded on correctness, but you will be graded on how you are engaging with this question in a creative, or inquisitive, or interesting, or mathematical way. Be warned: Though you will not be graded on correctness, I will deduct credit if you do not make sense.

Example grading. If you hand in something magnificent, you will get 5 points. If you hand in something I find to be completely unrooted from reality or logic, I will give you a zero, and your grade in this class will be unaffected. (You may get a zero for other reasons, too; these are merely examples.)

Miscellaneous guidelines. Usual formatting guidelines. Upload on Canvas by the above indicated deadline.

