Extra Credit Writing 2 (Deadline February 26th, 11:59 PM)

This is worth at most 5 extra credit points.

Background. Here is something interesting: If you take the derivative of sin(x) enough times, you get back sin(x) again!

$$\sin' = \cos, \tag{14}$$

$$(\cos)' = -\sin,\tag{15}$$

$$(-\sin)' = -(\sin)' = -(\cos) = -\cos,$$
 (16)

$$(-\cos)' = -(\cos)' = -(-\sin) = \sin .$$
 (17)

That is, if you take the derivative *four* times, you get back sin. Another way to say this is that the fourth derivative of sin(x) is sin(x) again.

Prompt. Can you find other functions that have the property that their *n*th derivatives are themselves? For example, can you find

- 1. A function whose derivative is itself? (This is the case n = 1.)
- 2. A function whose *second* derivative is itself? (This is the case n = 2.)
- 3. How about for third derivatives?
- 4. Is there a function other than sin whose fourth derivative is itself? How many can you find?

And how about for other n?

Explore, discuss, have fun!

Grading. This is a writing assignment to get your juices flowing. You will *not* be graded on correctness, but you will be graded on how you are engaging with this question in a creative, or inquisitive, or interesting, or mathematical way. Be warned: Though you will not be graded on correctness, I *will* deduct credit if you do not make sense.

Example grading. If you hand in something magnificent, you will get 5 points. If you hand in something I find to be completely unrooted from reality or logic, I will give you a zero, and your grade in this class will be unaffected. (You may get a zero for other reasons, too; these are merely examples.)

Miscellaneous guidelines. Usual formatting guidelines. Upload on Canvas by the above indicated deadline.