Extra Credit Writing 4 (Deadline March 18, 11:59 PM)

This extra credit assignment is worth at most 5 extra credit points.
Prompt. I am about to launch a t-shirt using a t-shirt cannon. I know that the t-shirt in the cannon will exit at a velocity of 30 meters per second. At what angle should I launch the t-shirt to maximize the horizontal distance that the t-shirt travels when the t-shirt hits the ground? Indicate your answer as an exact number - not a decimal approximation. So you are allowed to have things like arcsin, sin, square roots, et cetera.

Give an answer that depends on the initial height y_{0} of the t-shirt cannon. Your answer will be easiest when the initial height is zero.

It may help to think about velocity as follows:
The velocity of the t-shirt will have a vertical component v_{y} (how fast the t shirt is moving up or down) and a horizontal component v_{x}. And if s represents the speed of the t-shirt at time t, we'll have that

$$
s(t)=\sqrt{v_{x}(t)^{2}+v_{y}(t)^{2}}
$$

Finally, if an object has a horizontal speed of v_{x}, you can keep track of its horizontal coordinate as follows:

$$
x(t)=v_{x} \cdot t .
$$

If an object has an initial vertical speed of v_{t}, you can track its vertical coordinate as follows:

$$
y(t)=y_{0}+v_{y} t-4.9 t^{2}
$$

(This is an equation you'd learn in a physics class, or a mechanics class.)
Do what you can. If you can only find an answer when $y_{0}=0$, that's okay; you'll get partial credit.

Miscellaneous guidelines. Usual formatting guidelines. Upload on Canvas in PDF format by the above indicated deadline.

Hint. You should use calculus.

