
Lecture 3

Limits

When estimating slopes, we were led to a natural question: Does the di�er-
ence quotient

f(x + h) ≠ f(x)
h

tend to, or approach, some number as h approaches zero?
Then we defined the following:

Definition 3.0.1 (The derivative). If the di�erence quotient tends to some
number f Õ(x) as h approaches zero, we call f Õ(x) the derivative of f at x.

In reality, we have already seen how to compute some derivatives.
Example 3.0.2. For example, in preparing for today, you saw that the
di�erence quotient for f(x) = x2 + 2, and x = 1, is as follows:
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As with last class, the horizontal axis is labeled by h. Then as h tends to
zero, there is a clear value that this function “wants” to take. It is 2. Thus,
we observe:

The derivative of f(x) = x2 + 2 at x = 1 should be 3.
(End of example.)

But this is no way to live life. We shouldn’t have to draw the graph of a
di�erence quotient, and fill in a hole at h = 0, each time we want to find the
slope of f at some point x.

So here’s what we’re going to do: Suppose we are given a function

q(h)

that is defined everywhere except at h = 0. We’d like to explore basic
examples and tricks to determine whether q(h) approaches some value as h
goes to zero. If such a value exists, it will be called the limit of q(h) as h
goes to zero. This limit will be written

lim
hæ0

q(h).

So let’s get some practice.
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3.1 Limits, visually

Below are some graphs of functions q(h). Each function q is defined every-
where except at h = 0. For each, determine whether the limit

lim
hæ0

q(h)

exists; and if so, say what the limit is.

(a) ≠3 ≠2 ≠1 0 1 2 3
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≠3 ≠2 ≠1 0 1 2 3
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(b) ≠3 ≠2 ≠1 0 1 2 3
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(c) ≠3 ≠2 ≠1 0 1 2 3

≠2
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3.2 Limits for functions that aren’t presented

visually

Below are some functions q(h). Each function q is defined everywhere except
at h = 0. For each, determine whether the limit

lim
hæ0

q(h)

exists; and if so, say what the limit is.

1. q(h) =
Ó
h2 h ”= 0

2. q(h) =

Y
]

[
sin(h) h > 0
cos(h) h < 0

3. q(h) =

Y
]

[
1 h is a rational number and h ”= 0
0 h is an irrational number

Remark 3.2.1. Recall that a rational number is a number that can be
expressed as a fraction—things like ≠2/7, or 13, or 5/6. An irrational number
is a real number that is not a fraction. For example,

Ô
2 or fi.)

Remark 3.2.2. Informally, a function is called piecewise defined when it is
defined in the following format:

q(h) =

Y
__]

__[

blah blah some condition on h

blahbitty blah some other condition on h

Rob Loblaw perhaps another condition on h

We tend to define functions using the above format when it’s not easy to
define the function in one fell swoop. For example, the function (3) above
means that q(h) equals 1 when h is a non-zero rational number, and equals
0 when h is an irrational number.
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3.3 Limits, according to you

In your groups, can you say precisely what it means for a function q(h) to
have a limit as h goes to zero?

Put another way, if you had to write the entry in the dictionary for the
phrase “limit of q(h) as h goes to zero,” what would you write?

(This is very, very, hard, and requires a lot of creativity on your end.)
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3.4 Preparation for Lecture 4

In preparing for lecture four, you will explore something called ‘-” proofs
(this is read as “epsilon-delta” proofs).

Here is the general principle: Given a function g and a suspected limit
for g, you must find a ” (read delta) that guarantees you can get within ‘
(epsilon) of the suspected limit.

Example 3.4.1. Let g(x) = (8x2 + x)/x. You suspect that the limit of g(x)
as x approaches zero is 1. (You might arise at such a suspicion by simplifying
g, or drawing a graph of g.)

Now let ‘ = 0.1. Can you find a positive number ” so that, so long as you
choose a x ”= 0 with |x| < ”, then f(x) is within ‘ of 1? (Put another way, so
long as x is small enough—meaning its absolute value is less than ”—then
the value of g(x) is very close to 1—meaning at most distance ‘ from 1.)

Yes, you can.
To see how you can find this ”, let’s note the following:

|g(x) ≠ 1| = |8x2 + x

x
≠ x

x
| = |8x2 + x ≠ x

x
| = |8x2

x
| = |8x| (when x ”= 0)

The very lefthand side of this expression is the distance between g(x) and the
suspected limit, 1. The very righthand side is telling you that this distance
is always given by |8x| when x ”= 0. So for example, if you took x to
be 0.2, then the distance between g(x) and your suspected limit would be
|8x| = |8 ◊ 0.2| = 1.6.

So if you want g(x) to be within ‘ of 1, you want |8x| to be less than ‘.
That is, you want

|8x| < ‘.

This happens so long as |x| < ‘/8. So, choose ” = ‘/8. Then so long as
|x| < ”, you can guarantee that |g(x) ≠ 1| < ‘.

Note that while I originally asked for a ” so that you are within 0.1 of
the suspected limit, you have discovered that regardless of ‘, you can choose
” = ‘/8 to be within ‘ of the suspected limit.

Example 3.4.2. Let g(x) = 3x/x. You suspect that the limit of f(x) as x
approaches zero is 3.

And let ‘ = 12. Can you find a positive number ” so that, so long as
x ”= 0 and |x| < ”, then g(x) is within ‘ of 3?
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Yes; in fact, any positive number ” will do. This is because—regardless
of x—g(x) is always equal to 3 so long as x ”= 0. Thus

|g(x) ≠ 3| = |3x

x
≠ 3| = 0 whenever x ”= 0

and 0 is of course smaller than any ‘. So, regardless of ”, your g(x) will
always be within ” of 3.

Example 3.4.3. Let g(x) = (4x3 +9x)/x. You suspect that the limit of g(x)
as x approaches zero is 9. (You might arise at such a suspicion by simplifying
g, or drawing a graph of g.)

Now suppose someone gives you some positive number called ‘. Can you
find a positive number ” so that, so long as you choose a value of x so that
x ”= 0 and |x| < ”, then g(x) is within ‘ of 9? That is, can you find a ” so
that

|x| < ”, x ”= 0 implies |g(x) ≠ 9| < ‘?
Yes, you can.
To see how you can find this ”, let’s note the following:

|g(x)≠9| = |(4x3 + 9x)
x

≠9x

x
| = |4x3 + 9x ≠ 9x

x
| = |4x3

x
| = |4x2| (when x ”= 0)

The very lefthand side of this expression is the distance between g(x) and the
suspected limit, 9. The very righthand side is telling you that this distance
is always given by |4x2| when x ”= 0. So for example, if you took x to
be 0.1, then the distance between g(x) and your suspected limit would be
|4x2| = |4 ◊ 0.01| = 0.04.

So if you want g(x) to be within ‘ of 9, you want |4x2| to be less than ‘.
That is, you want

|4x2| < ‘.

That is, you want
|x2| < ‘/4.

Because squaring a number preserves <—meaning a2 < b2 if and only if
|a| < |b|—we conclude that for the above inequality to hold, we want

|x| <
Ò

‘/4.

Thus, set ” =
Ò

‘/4. Then, based on the work above, we know that if |x| < ”,
then |g(x) ≠ 9| is less than ‘.
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For next quiz, you will be tested on whether—given g(x), a suspected
limit L, and ‘—you can find a ” so that

If x ”= 0 and |x| < ”, then |g(x) ≠ L| < ‘.

You will be tested on the following g and L. (You should be able to find ” as
an expression involving only g, L, ‘, though often you will not need L at all.)

1. g(x) = (2x3 + 9x)/x, with L = 9.

2. g(x) = (5x2 + 7x)/x, with L = 7.

3. g(x) = 3, with L = 3.


