
Lecture 4

Limit laws

In preparing for quizzes, you’ve started exploring the idea of:
“If you want to your function’s values to be close to the limit at zero, you

just need to take your input to be close to zero.”
You will think more about this sentence, and how to interpret it, in your

next writing assignment, and in your upcoming preparations.
Today, we’re going to work on building intuition and tools, rather than

attacking the formal definition of a limit.

4.0.1 You can ask for limits at various points
Consider the following function f(x):
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It is not defined at x = 1, but it clearly has a limit there. So, though we
have only been talking at limits as x approaches zero, we see the following:

We can ask about the limit of f(x) as x approaclawhes some number other than zero, too.

Whenever the limit exists as x approaches a, we will write this limit as

lim
xæa

f(x).

4.0.2 Limits where the function is defined
Consider the following function f(x):
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This time, f(x) is defined at x = 1. (We see f(x) = 0.) But we also see
that the limit of f(x) as x approaches seems to want to be something like
2.5—not the value of f . Thus, we see the following:

It is possible that lim
xæa

f(x) exists, and is not equal to f(a).

4.0.3 Limits might not exist
And as we have already seen, some functions may not have limits at certain
points. Below is an example of a function that does not have limits at the
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points -1 and 1:
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4.1 Limit laws: The straightforward ones
Today I’m going to tell you that you can rely on certain laws for computing
limits.

Remark 4.1.1. These laws are dissatisfying, because you should demand
more: Why are these laws valid? We will why later, when we apply the ‘-”
definition to prove these laws.

Limits of constants. If f(x) is a constant function1 with value C, then

lim
xæa

f(x) = C

regardless of a.
Limits of x. For the function f(x) = x, we have that

lim
xæa

f(x) = a.

(I encourage you to graph the function f(x) = x; then this law will seem
“obvious” to you.)

Remark 4.1.2. The first two laws are hopefully not too bewildering; the
notation is confusing, but these are meant to be among the simplest examples.
I state these just to get our feet wet; it’s the next few laws that will really
get us going.

Limits scale. If a limit already exists, then the limit of the scaled func-
tion is the scaled limit of the function. More precisely: If limxæa f(x) already
exists, then for any number m, we have the following:

lim
xæa

(m · f(x)) = m ·
3

lim
xæa

f(x)
4

Limits add. If the limits already exist, then the limit of the sum exists;
moreover, the sum of the limits is the limit of the sum.

More precisely, if limxæa f(x) and limxæa g(x) both exist, then limxæa (f(x) + g(x))
exists, and

lim
xæa

(f(x) + g(x)) =
3

lim
xæa

f(x)
4

+
3

lim
xæa

g(x)
4

1This means f(x) = C for some number C. Put another way, the graph of f(x) is just
a flat, horizontal line.
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Limits multiply. If limits already exist, then the limit of the product
exists; moreover, the product of the limits is the limit of the product.

More precisely, if limxæa f(x) and limxæa g(x) both exist, then limxæa (f(x) · g(x))
exists, and

lim
xæa

(f(x) · g(x)) =
3

lim
xæa

f(x)
4

·
3

lim
xæa

g(x)
4

Limits divide. If limits already exist, then the limit of the quotient ex-
ists; moreover, the quotient of the limits is the limit of the quotient (provided
the denominator is not zero).

More precisely, if limxæa f(x) and limxæa g(x) both exist, then limxæa (f(x)/g(x))
exists, and

lim
xæa

A
f(x)
g(x)

B

= limxæa f(x)
limxæa g(x)

so long as limxæa g(x) ”= 0.

Remark 4.1.3. The above limit laws have three parts: (i) The given knowl-
edge that certain limits already exist, (ii) The guarantee that another limit
exists, and (iii) The formula of how to compute that other limit.

I wrote all the formulas in such a way that the righthand side of the
formula consists of the limits given to exist; the lefthand side is the limit
that we are then guaranteed to exist.

Remark 4.1.4. It’s important to note that, for every law, the limits are
taken at the same point. That is, every limit in sight is taken as x approaches
a single number a. So for example, even if I know that limxæa f(x) exists, and
that limxæb g(x) exists, I don’t know anything about the limits of f(x)+g(x)
unless a = b. (In which case, I know that a limit exists as x æ a.)

4.1.1 Practice with the straightforward limit laws
All of the exercises below could have been solved by “looking at the graphs.”
But I want you to instead solve them by using the limit laws.

Exercise 4.1.5. Using some of the facts above, convince yourself that if
g(x) = mx, then2

lim
xæa

g(x) = g(a).

(Hint: Use the function f(x) = x and the scaling law.)
2The graph of g(x) is a line of slope m with zero as y-intercept. So even before you

knew these limits laws, you should have been able to tell me what the limit as x æ a is!
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Exercise 4.1.6. Using some of the facts above, convince yourself that if
h(x) = x2, then

lim
xæa

h(x) = h(a).

(Hint: Use the functions f(x) = x and g(x) = x, along with the product
law.)

Exercise 4.1.7. Using some of the facts above, convince yourself that if
h(x) = x2 + 3, then

lim
xæa

h(x) = h(a).

Exercise 4.1.8. Using some of the facts above, show that limits subtract.
More precisely, if limxæa f(x) and limxæa g(x) exist, then so does limxæa (f(x) ≠ g(x)).

Moreover,
lim
xæa

(f(x) ≠ g(x)) =
3

lim
xæa

f(x)
4

≠
3

lim
xæa

g(x)
4

(Hint: Use the fact that limits scale, taking your scaling constant to be
m = ≠1, and use the fact that limits add.)

Exercise 4.1.9. Use the limit laws to compute

lim
xæ1

A
x2 + 3

x

B

.

What goes wrong when you try to compute the limit as x æ 0?
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4.2 Preparation for Lecture 5
In Lecture 4, you saw examples of functions f(x) that satisfied what seems
like a nice property:

lim
xæa

f(x) = f(a).

That is, the limit of the function at a is actually the value of the function at
a. (Implicit here is that the function also has a limit at a, which is already
a nice property of the function.)

This isn’t always the case for all functions. For example, we saw in
Section 5.0.2 an example of a function that has a limit as x æ 1, but whose
limit there doesn’t equal f(1).

So let’s have an adjective to describe this “nice” property: continuous.

Definition 4.2.1. A function f is called continuous at a if

1. f(a) is defined,

2. limxæa f(x) exists, and

3. limxæa f(x) = f(a).

Remark 4.2.2. This is a definition for the phrase “continuous at a.”

Example 4.2.3. Let f(x) = 1/x. Then f is not continuous at zero because
it is not defined at x = 0.

Example 4.2.4. Let f(x) = 1/x. Then f is continuous at 2. To see this,
we just need to check all three conditions in Definition 5.2.1.

1. Clearly, f(2) is defined. Then,

2. the fact that limits divide (one of the limit laws!) tells us that limxæ2 f(x)
exists, and

3. this limit is computed as

lim
xæ2

f(x) = limxæ2 1
limxæ2 x

= 1
2 .

On the other hand f(2) = 1/2 by definition of f(x), so we see that

lim
xæ2

f(x) = f(2).
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So we have checked that all three conditions of continuity in Definition 5.2.1
are satisfied. This means f(x) = 1/x is continuous at x = 2.

In preparation for next lecture, you should be able to answer the following
questions:

(a) What are the three conditions you need to check to see whether a function
f(x) is continuous at a?

(b) Why is f(x) = 3/x not continuous at zero?

(c) Why is f(x) = 8/x continuous at 5?


