
Lecture 6

The Intermediate Value

Theorem

6.1 Some warm-up exercises

(You will not need your preparation for this class to answer these exercises.)

Exercise 6.1.1. Consider the function f(x) = x2 + 10. Does this function
have a root?

(Recall that a root is a value of x for which f(x) equals zero. So, another
way to rephrase the question: is there a value of x such that x2 + 10 equals
zero?)

Explain.

Exercise 6.1.2. Consider the polynomial function f(x) = x5+7x4≠22x+19.
(This function is complicated, I know!)

Let me tell you that f(≠10) has the value -29,761. Also, f(3) equals 763.
Based on this information, does f(x) have a root?
(This question is not asking you to find a root; it’s asking you whether a

root exists.)
Explain. Can you explain in such a way where you can ignore/forget how

complicated f(x) looks?
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6.2 The Intermediate Value Theorem (IVT)

We didn’t get to go over the word “theorem” in the previous class (though
it was used on the hand-out). A theorem is a mathematical fact that is
very useful, and that somebody proved for your use. Because somebody has
proven our theorems to be true1, you may utilize theorems whenever you like
in the future.

Here is a theorem.

Theorem 6.2.1 (Intermediate Value Theorem). Let f(x) be a continuous
function, and choose two real numbers a and b with a < b. 2 Then for any
number N between f(a) and f(b), 3 there is a number c between a and b so
that f(c) = N .

Put another way, on the way from a to b, the graph of f attains (at least)
every height between f(a) and f(b).

Remark 6.2.2. Sometimes, we abbreviate the Intermediate Value Theorem
by “IVT” (especially when we are running out of time on exams or quizzes).

Example 6.2.3. Here is a graph of a function f(x) that your friend began
to make, then stopped part-way:
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1
The beauty is, if you want, you can prove it too! It just won’t be easy with the tools

you’ve learned so far, but you can do it.
2
You should imagine these numbers to be on the x-axis.

3
You should imagine N , f(a), and f(b) to be on the y-axis
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So you have no idea what f(x) looks like in the region between 8 and 10.
However, you do know that f(8) = 0 and f(10) = ≠3. Therefore, if f(x) is
continuous, then the Intermediate Value Theorem tells you that f(x) must
hit (at least) every number between 0 and ≠3, at least once.4

For example, -2.7 is a number between 0 and -3. So, though you do
not know where, you do know that f(x) must equal -2.7 at some value of x
between 8 and 10. 5 Here is a pictorial way to think about it:
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We have drawn, in dashes, the line at height -2.7. Because f(x) is con-
tinuous, to get from height 0 to height ≠3, the graph of f(x) must cross over
this line at some point in the grey region. We don’t know where f(x) crosses
the line, but it does so somewhere between x = 8 and x = ≠10.

Remark 6.2.4. Note that, in Example 6.2.3, the graph of f(x) crosses over
the line of height -2.7 outside the grey region as well. That’s all well and
good, but the intermediate value theorem only guarantees something about
the grey region—i.e., about the region between a and b.

Remark 6.2.5. Here are some examples of continuous functions that could
fill in the grey region from Example 6.2.3:

4
In this example, a = 8 and b = 10.

5
In terms of the letters used in Theorem 6.2.1, N = ≠2.7. And c is the some value

between 8 and 10.
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Note that f(x) may attain N at more than one value of c. (You can see this
graphically in the lefthand example: The graph of f(x) crosses the horizontal
line of height N = ≠2.7 three times.)

Note that f(x) does not need to stay inbetween f(a) and f(b). (You can
see this on the righthand example.) That is, even if a < c < b, it need not
be true that f(c) is between f(a) and f(b).

Exercise 6.2.6. Do Exercise 6.1.2 again, using the IVT. Make sure you know
what the values of a, b, and N are.

Do you know the value of c?
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6.3 Intermediate value theorem on a closed

interval

Recall that a closed interval is an interval of the form

[a, b]

with a < b. For example, [2, 7] is the interval of all numbers between 2 and
7, including 2 and 7.

An open interval is an interval of the form

(a, b)

with a < b. For example, (2, 7) is the interval of all numbers between 2 and
7, not including 2 and 7.

If a function f(x) is defined only on a closed interval [a, b], it’s not obvious
what we mean for f to be continuous—mainly because we can only define a
one-sided limit (and not a limit) at a and b. But we take what we can get:

Definition 6.3.1. If a function f(x) is defined only on a closed interval [a, b],
we say that f is continuous at a if

1. The righthand limit limxæa+ f(x) exists, and

2. limxæa+ f(x) = f(a).

Likewise, we say that f is continuous at b if

1. The lefthand limit limxæb≠ f(x) exists, and

2. limxæb≠ f(x) = f(b).

We say that f is continuous if it is continuous at every point of [a, b]. 6

Theorem 6.3.2. The intermediate value theorem holds for continuous func-
tions defined on a closed interval.

6
Note that for any element c inside of (a, b)—that is, for any c with a < c < b—we

know what it means for f(x) to be continuous at c, because we know how to define the

limit of f at c.
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6.4 A fun exercise: Wonky pizza

Here is a picture of a wonky-shaped pizza. (And yes, it’s gray; not the most
tasty-looking thing, is it?)

Your boss wants you to cut this pizza in half, using one, linear cut. For
example,

and

are two cuts you’re allowed to make. Notice that the resulting pizza can have
more than just two pieces (as seen on the righthand cut). All that your boss
wants is that all the pizza on one side of the cut, has the same area as all
the pizza on the other side of the cut.

Exercise 6.4.1. Using the Intermediate Value Theorem, convince yourself
that for any slope m you choose, you can make a cut of slope m such that
you divide the pizza into equal halves (just as your boss requires).

Does the theorem tell you where to cut the pizza?
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6.5 Preparation for Lecture 7

Puncture law. Let f(x) and g(x) be two functions. Suppose that the two
function are equal away from a. Then f(x) has a limit at a if g(x) does, and
likewise, g(x) has a limit at a if f(x) does. Moreover,

lim
xæa

f(x) = lim
xæa

g(x).

Warning 6.5.1. Many calculus textbooks do not talk about a “puncture
law.” In my opinion, this is a bit ludicrous, because about half of the algebraic
“tricks” we have to compute limits are dependent on it. I must admit that
I made up the term “puncture law,” so you may find your peers outside of
your class being confused if you use this law.

Example 6.5.2 (A graphical example). On the left is a graph of f(x), and
on the right is a graph of g(x).
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Note that the value of f(x) and g(x) are di�erent at a (the black dots are at
di�erent heights).7 But f(x) and g(x) are otherwise identical, so they have
the same limit at a. This “obvious” fact is called the puncture law.

Example 6.5.3 (Algebraic example). Let

f(x) = x2

x
and g(x) = x.

7
Let me remind you—as I mentioned in class—that the white dot means that the

function does not take the value of the white dot there. The black dot indicates the value

of the function. Often, we write a white dot where it looks like a function wants to take

a value, but does not.
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Note that f(x) is not defined at x = 0, but is equal to g(x) for all other
values of x. Thus, the puncture law tells us that

lim
xæ0

f(x) = lim
xæ0

g(x). (6.5.0.1)

Of course, you know what the righthand side is (by plugging in what g(x)
is):

lim
xæ0

g(x) = lim
xæ0

x = 0. (6.5.0.2)

So, putting (6.5.0.1) and (6.5.0.2) together, we see that

lim
xæ0

f(x) = 0.

In other words (by plugging in the definition of f(x)) we find:

lim
xæ0

x2

x
= 0.

Note that this is an example where the quotient law wouldn’t help you, because
the limit of the denominator equals zero!

Example 6.5.4 (Rational functions). Let’s find the limit

lim
xæ2

(x + 1)(x ≠ 2)
x ≠ 2 .

Note that the function we have is undefined when x = 2 (because we can’t
divide by x ≠ 2 when x = 2). But, we know the following:

(x + 1)(x ≠ 2)
x ≠ 2 = x + 1 so long as x ”= 1.

In other words, the two functions

(x + 1)(x ≠ 2)
x ≠ 2 and x + 1

are equal away from x = 1. Thus, the puncture law tells us

lim
xæ2

(x + 1)(x ≠ 2)
x ≠ 2 = lim

xæ2
(x + 1).
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Now, let’s just compute the righthand side:

lim
xæ2

(x + 1) = lim
xæ2

x + lim
xæ2

1 (6.5.0.3)

= 2 + 1
= 3.

(We used the addition law in line (6.5.0.3).) Putting everything together, we
conclude:

(x + 1)(x ≠ 2)
x ≠ 2 = 3.

We’re done, but let me streamline everything to show you what you might
be able to write on a test:

lim
xæ2

(x + 1)(x ≠ 2)
x ≠ 2 = lim

xæ2
(x + 1) by the puncture law

= lim
xæ2

x + lim
xæ2

1 by the addition law

= 2 + 1
= 3.

Another solution you might write on a test is:

lim
xæ2

(x + 1)(x ≠ 2)
x ≠ 2 = lim

xæ2
(x + 1) by the puncture law

= 2 + 1 because polynomial functions are continuous
= 3.

Example 6.5.5 (Another rational function). Let’s do another rational func-
tion example. Let’s compute 8

lim
xæ3

x2 ≠ 2x ≠ 3
x2 ≠ 9 .

This looks very complicated; to use the puncture law, we’d like to find some
other function that is equal to x2≠2x≠3

x2≠9 away from 3. The trick I want you
to learn here is that you can cancel (x ≠ 3) in the top and bottom. This

8
Note that the quotient law doesn’t help here, because the limit of the denominator

equals zero.
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may seem very confusing, because (x ≠ 3) doesn’t appear anywhere in the
function as it’s presented. But you’ll see that it does appear if you factor.

Pro tip. Why do you want to try to cancel x≠3? It’s because we should
feel that a term of the form “x ≠ 3” is what’s causing the denominator to
equal zero at x = 3. So it’s natural to try and see if, indeed, a factor of (x≠3)
can pop up in the denominator. More generally, for rational functions, if you
are computing a limit as x approaches a, it is natural to try to find (x ≠ a)
as a factor of the top and bottom.

Warning. If you don’t know how to divide or factor polynomials, you
should learn by Googling online and practicing—in this class, you are already
expected to know how to divide polynomials using long division, or to factor
polynomials through other tricks).

In fact, we can factor both the top and the bottom:

x2 ≠ 2x ≠ 3
x2 ≠ 9 = (x ≠ 3)(x + 1)

(x ≠ 3)(x + 3) .

And we see that we can cancel the (x ≠ 3) terms! So, when x does not equal
3, our function x2≠2x≠3

x2≠9 is equal to

x + 1
x + 3 . (6.5.0.4)

By the puncture law, we thus conclude the following:

lim
xæ3

x2 ≠ 2x ≠ 3
x2 ≠ 9 = lim

xæ3

x + 1
x + 3 .

And, as we saw in the preparation for last lecture, any rational function is
continuous where it is defined. The rational function in (6.5.0.4) is defined at
x = 3, so—by the definition of continuity—we can compute the limit simply
by plugging 3 into x:

lim
xæ3

x + 1
x + 3 = 3 + 1

3 + 3 = 4
6 = 2

3 .

Putting everything together, we conclude

lim
xæ3

x2 ≠ 2x ≠ 3
x2 ≠ 9 = 2/3.
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For next class’s quiz, I expect you to be able to use the puncture law
to compute limits of rational functions. For example, you should be able to
compute the following limits:

1. limxæ0
x3+3x2

x2 .

2. limxæ2
x2+x≠6

x≠2 .

3. limxæ≠2
x2≠4

x2+x≠2 .


