
Lecture 7

Derivatives

Let f be a function. You have already seen the following definition, but I
will state it again as a reminder:

Definition 7.0.1. The derivative of f at x is the limit

lim
hæ0

f(x + h) ≠ f(x)
h

.

If this limit does not exist, we say that f does not have a derivative at x.

Definition 7.0.2. Some more terminology: If f has a derivative at x, we
also say that f is di�erentiable at x. If f is di�erentiable everywhere f is
defined, we say that f is di�erentiable.

We can see why we spent so much time studying the di�erence quotient,
and studying limits. We need to be comfortable with di�erence quotients to
write the limit we want to compute. And we need to be comfortable with
limits to be able to compute the limit we wrote!

Warning 7.0.3. The limit is computed as h goes to zero, not as x goes to
zero.

Remark 7.0.4. Remember that the di�erence quotient measures the slope
of the “secant” line going through f(x) and f(x + h). The limit as h goes to
zero measures the slope of the “tangent” line at x.
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7.1 From the basics
Exercise 7.1.1. Below is the graph of f(x) = x2. I have also drawn the
tangent line to f(x) at x = 3.
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Using the definition of the derivative (and the limit laws), tell me the
slope of this tangent line.

Exercise 7.1.2. Let f(x) = 3x + 2.

1. Find the derivative of f(x) at x = 2 by drawing the graph of f(x).

2. Find the derivative of f(x) at x = 2 by using the definition of the
derivative.

Warning 7.1.3. It is very rare that you’ll be able to accurately compute the
derivative of a function by drawing the graph—you can basically only eyeball
a derivative when the function looks “flat” somewhere (where the derivative
is zero). A computer will be able to approximate the derivative very well,
but it is hard for us to do with the naked eye—at least, it’s hard without
some very accurate estimates. So it’s a good thing we studied how to take
limits algebraically—i.e., using formulas.
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7.2 The derivative as a function (important
notations!)

Let f(x) be a function. Then for every x, we can ask what the slope of the
tangent line at x is. Consider the example f(x) = x2. I have drawn tangent
lines for several values of x below:
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These are plotted at x = 0, 1, 2, 3 respectively.
As you can see, the slope of the tangent line changes as the value of x

changes.
Well, if for every x, we get a number called the slope, we have a new

function! 1 We call this function the derivative of f .

Definition 7.2.1. Suppose f(x) is di�erentiable at every x where f is de-
fined. Then the derivative of f is the function f Õ defined as follows:

f Õ(x) = lim
hæ0

f(x + h) ≠ f(x)
h

.

The lefthand side is read “f -prime of x.” The word “prime” refers to the
little tick mark Õ that you see in f Õ(x).

Notation 7.2.2. Sometimes, we will write

df

dx

instead of f Õ(x). That is, df
dx and f Õ are the same thing. Because we so often

write y = f(x), you may also see notation such as

dy

dx
1Remember that a function is just a way of producing an output number from an input

number. In this case, the input is x, and the output is the slope (of the tangent line at x).
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and
yÕ

and I want you to know that these all mean the same thing.

Notation 7.2.3. We will also think of “taking the derivative” as a way to
take one function and output another. That is, we begin with a function
f(x) and we produce a new function called f Õ(x).

This operation of taking the derivative will be notated by

d

dx

so, for example,
d

dx
f = df

dx
= f Õ.

I know this all seems pedantic and useless, but these notations are all com-
monly used, so I want you to see this notation now to prevent future confu-
sion.

Warning 7.2.4. Before, we were a little cavalier/careless about the distinc-
tion between functions and numbers. For example, if f is the name of a
function, then f(x) is actually the number that f outputs for x.

I have been careless about this as well—I’ll often say “let f(x) be a
function.”

From now on, it will be very important to know what is a function, and
what is an output number.



7.3. BASIC LAWS FOR DERIVATIVES 5

7.3 Basic laws for derivatives
Just as for limits, we will first compute derivatives for the simplest examples,
and then find ways to compute more complicated derivatives.

Constant functions have zero derivative. That is, if f(x) = C for
some real number C, then

f Õ(x) = 0.

Just to get practice with notation, this could also be written

d

dx
(C) = 0.

Proof. Let’s see that “constant functions have zero derivative” in two ways.
1. Graphically, f(x) = C has a graph given by a horizontal line at height

C. This line clearly has slope zero, and the tangent line at any point is
(perhaps confusingly) the same horizontal line at height C! So the tangent
lines also have slope zero everywhere.

2. Or, using the definition of the derivative, we can compute:

f Õ(x) = lim
hæ0

f(x + h) ≠ f(x)
h

(7.1)

= lim
hæ0

C ≠ C

h
(7.2)

= lim
hæ0

0
h

(7.3)

= lim
hæ0

0 (7.4)

= 0. (7.5)

The first equality is the definition of the derivative. The next line follows
from plugging in the definition of f . The next line is algebra. Then we use
the puncture law, and finally we use that a limit of a constant function (with
value zero) is just the value of that function.

The identity function has derivative 1. That is, if f(x) = x, then

f Õ(x) = 1.

Proof. We can again see this in two ways.
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1. Graphically, f(x) = x has a graph given by a line of slope 1. So the
tangent line at any point is (perhaps confusingly) the same line of slope 1.

2. Or, using the definition of the derivative, we can compute:

f Õ(x) = lim
hæ0

f(x + h) ≠ f(x)
h

(7.6)

= lim
hæ0

x + h ≠ x

h
(7.7)

= lim
hæ0

h

h
(7.8)

= lim
hæ0

1 (7.9)

= 1. (7.10)

The first equality is the definition of the derivative. The next line follows
from plugging in the definition of f . The next line is algebra. Then we use
the puncture law, and finally we use that a limit of a constant function (with
value 1) is just the value of that function.

Derivatives scale. That is, if f is di�erentiable at x, and m is a number,
then A

d

dx
(mf)

B

(x) = m
df

dx
(x).

Another way to write this would be

(mf)Õ(x) = mf Õ(x).

Example 7.3.1. Let’s find the derivative of h(x) = 7x. Set f(x) = x and
m = 7. Then

A
d

dx
h

B

(x) =
A

d

dx
(mf)

B

(x) (7.11)

= m
df

dx
(x) (7.12)

= 7 · 1 (7.13)
= 7. (7.14)

The first line uses the fact that h = f +g, and the next line uses the addition
law for derivatives. The last line uses the fact that we know—when f(x) = x
and g(x) is constant—that f Õ(x) = 1 and gÕ(x) = 0.
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Derivatives add. That is, if f and g are two functions, and if they both
are di�erentiable at x, then

A
d

dx
(f + g)

B

(x) = df

dx
(x) + dg

dx
(x).

Another way to write this would be

(f + g)Õ(x) = f Õ(x) + gÕ(x).

Example 7.3.2. Let’s find the derivative of h(x) = 7x + 3. Set f(x) = 7x
and g(x) = 3. Then

A
d

dx
h

B

(x) =
A

d

dx
(f + g)

B

(x) (7.15)

= df

dx
(x) + dg

dx
(x) (7.16)

= 7 + 0. (7.17)

The first line uses the fact that h = f +g, and the next line uses the addition
law for derivatives. The last line uses the fact that we now know—when
f(x) = 7x and g(x) is constant—that f Õ(x) = 7 and gÕ(x) = 0.
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7.4 The power law
At this point, derivatives follow very di�erent rules than limits:

The power rule (for powers of x). Let n be any integer, and let
f(x) = xn. Then f is di�erentiable at any x, and

A
d

dx
(f)

B

(x) = nxn≠1.

Another way to write this would be
d

dx
(xn) = nxn≠1.

Warning 7.4.1. The power rule for derivatives is very di�erent from the
power rule for limits. One thing to notice is that we are only taking powers
of x; we are not taking powers of more complicated functions. That is, we
have not yet dealt with derivatives of things like (g(x))n for an arbitrary
function g. (This will be in our next classes, when we law the “chain rule”
for derivatives.)

Also, the derivative does not simply “move inside” the parentheses in this
power rule. Put another way, d

dx(xn) ”= ( d
dx(x))n.

Example 7.4.2. Let’s find the derivative of f(x) = x3 + x2 + 3. We have:
d

dx
(x3 + x2 + 3) = d

dx
(x3) + d

dx
(x2) + d

dx
(3) (7.18)

= 3x2 + 2x + 0 (7.19)
= 3x2 + 2x. (7.20)

The first line uses the addition law for derivatives, and the next line uses the
power law for derivatives.

You can now find the derivative of any polynomial! You will be
expected to be able to do so using the power rule and the addition rule. You
will get practice in lab.
Exercise 7.4.3. Compute the derivatives of the following functions:

1. 3x ≠ 5.

2. 3x2 ≠ 8x + 5.

3. 3x4 ≠ 8x2 + 7x + 2.
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7.5 The Leibniz rule
This is my favorite.

Derivatives do not multiply. But we can find the derivative of a
product. The formula for doing this is called:

The Leibniz rule (also known as the product rule). If f and g are
di�erentiable at x, then so is the product fg, and the derivative is computed
as follows: A

d

dx
(f · g)

B

(x) = f Õ(x)g(x) + f(x)gÕ(x).

Exercise 7.5.1. Your friend comes to you—quite proud—and thinks they
can prove the Leibniz rule. They say “Let h(x) = f(x) ·g(x),” and they write
down the following sequence of equations:

A
d

dx
h

B

(x) (7.21)

=
A

d

dx
(f · g)

B

(x) (7.22)

= lim
hæ0

(f · g)(x + h) ≠ (f · g)(x)
h

(7.23)

= lim
hæ0

f(x + h)g(x + h) ≠ f(x)g(x)
h

(7.24)

= lim
hæ0

f(x + h)g(x + h) ≠ f(x)g(x + h) + f(x)g(x + h) + f(x)g(x)
h

(7.25)

= lim
hæ0

f(x + h)g(x + h) ≠ f(x)g(x + h)
h

+ lim
hæ0

f(x)g(x + h)f(x)g(x)
h

(7.26)

= lim
hæ0

A

g(x + h)f(x + h) ≠ f(x)
h

B

+ lim
hæ0

f(x)g(x + h)g(x)
h

(7.27)

= lim
hæ0

g(x + h) · lim
hæ0

f(x + h) ≠ f(x)
h

+ lim
hæ0

f(x) · lim
hæ0

g(x + h)g(x)
h

(7.28)

= g(x) · lim
hæ0

f(x + h) ≠ f(x)
h

+ f(x) · lim
hæ0

g(x + h)g(x)
h

(7.29)

= g(x) · f Õ(x) + f(x) · gÕ(x) (7.30)
= f Õ(x)g(x) + f(x)gÕ(x). (7.31)
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Is this a valid proof? Is every step correct? Should your friend say more?
Discuss.
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7.6 Preparation for Lecture 8
We discussed in class that

lim
xæ0

sin(x)
x

is an example of a limit where the quotient rule does not help us, and we’ll
have to do more work. For the last week, the puncture rule has helped us.
Here, it will not. We deal with a new limit law to help us:

Theorem 7.6.1 (The squeeze theorem). Let f, g, h be three functions, and
suppose we know the following three facts:

1. For every x,
f(x) Æ g(x) Æ h(x),

2. The limits limxæa f(x) and limxæa h(x) exist, and

3.
lim
xæa

f(x) = lim
xæa

h(x).

Then we can conclude that limxæa g(x) exists, and is equal to the limits of
f and h:

lim
xæa

f(x) = lim
xæa

g(x) = lim
xæa

h(x).

Example 7.6.2. Here is a pictorial example:
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The parabola-looking graph at the top is h(x); the very erratic, highly oscil-
latory graph in the middle is g(x); and the absolute-value-like graph at the
bottom is f(x). In this picture, we see that

f(x) Æ g(x) Æ h(x)

for every x, simply by comparing the heights at each x. Note that f and h
have limits at the origin—they both approach height 0 as x approaches zero.
Hence, g is “squeezed” and forced to have a limit as x approaches zero (and
in fact, the value of the limit of g there must equal the limits of f and h).

Our goal for next lecture will be to use the squeeze theorem to compute
limxæ0

sin(x)
x . For this, we will set g(x) = sin(x)/x. We need to find candidates

for f(x) and h(x).
We will find these candidates shortly; it turns out we need some very

clever insights to do so. Here is one of the clever insights. Consider a circle
of radius 1, drawn on the left:

◊

Now, imagine somebody gives me an angle ◊ (drawn on the right).
I can draw three shapes based on this angle:

1. A small right triangle contained inside the circle, making angle ◊ at the
origin.

2. A sector of the circle—that is, a slice of the circular pie—making an
angle ◊ at the origin.
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3. A large right triangle whose height is tangent to the circle, making
angle ◊ at the origin.

These are drawn below:

I want to note the following: The smaller triangle (inside the circle) has
height sin(◊) and width cos(◊). The larger triangle has height tan(◊) and
width 1. You should be able to justify the claims in this paragraph.
(This is dependent on your knowledge from precalculus, or earlier in life; as
you can see, you may need to brush up on your trigonometry.)

A summary is as follows, where I’ve drawn the circle—along with the
three shapes above—all in one picture, with important lengths labeled:

sin
(◊

)

ta
n(

◊)

◊
cos(◊)

(7.32)

(Remember that the circle has radius 1.)
From the picture, it is clear that

Area of small triangle Æ Area of sector of angle ◊ Æ Area of large triangle.

(In fact, from the picture, we can take “<” instead of “Æ,” but we won’t
need to use this fact.)

So let’s remember that
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• The area of a triangle is 1/2 times width times height, and

• The area of a sector of angle ◊ is given by fir2 ◊
2fi . In our example, the

radius of the circle is 1, so r = 1.

So the above inequalities of areas becomes:

sin(◊) cos(◊)
2 Æ ◊

2 Æ tan(◊)
2 . (7.33)

For next lecture’s quiz, I expect you to be able to do the following:

1. State the squeeze theorem. (That is, you should memorize Theo-
rem 7.6.1 and be able to state it again on the quiz.)

2. Be able to produce the inequality in (7.33) by drawing the appropri-
ate picture (7.32), and computing areas correctly. Once you draw the
appropriate picture, you should be able to explain in words the three
areas you are computing.


