
Lecture 12

Limits equaling Œ

Warning 12.0.1. We will be using the
symbol Œ a lot. This symbol stands for
“infinity.” I want you to know that the
way we use Œ in calculus class can be
detrimental to understanding the other
uses of infinity in mathematics.

There are “infinitely many” integers;
this notion of infinity answers the ques-
tion “how many?”. The “how many”
notion is subtly, but definitely, di�erent
from the notion of Œ that we’ll use in
calculus.
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12.0.1 Infinity, in our class
Where are Œ and ≠Œ? This is controversial among some calculus in-
structors; but in my class, you will treat Œ and ≠Œ as though they are
“numbers.” In fact, you should imagine that I’ve added two ends to the
number line:

0≠Œ Œ

So for example, between 0 and Œ lies every positive real number. Between
≠Œ and 0 lies every negative real number. Œ is larger than any number;
≠Œ is lesser than any number.

Remark 12.0.2. This should give you some idea for what it means to ap-

proach infinity. It means that, for any point T on the real line, you eventually
surpass and stay larger than T . Likewise, for you to approach ≠Œ means
that, for any number T on the real line, you eventually become more negative
than, and stay more negative than, T .

12.0.2 Arithmetic with Œ and ≠Œ
Of course, you should be able to add/subtract/multiply/divide numbers.
Here are the basic rules you need to remember; they are what you would
have guessed. (Below, remember that Œ and ≠Œ are NOT real numbers.)

• Addition and multiplication are still commutative.

Here are the rules involving addition and subtraction:

• If x is a real number, x + Œ = Œ and x + (≠Œ) = (≠Œ).1

• Œ + Œ = Œ and (≠Œ) + (≠Œ) = (≠Œ).

When taking products and quotients, we must never involve zero with ±Œ:

• If x is a positive real number, x ◊ Œ = Œ and x ◊ (≠Œ) = (≠Œ).

• If x is a negative real number, x ◊ Œ = ≠Œ and x ◊ (≠Œ) = Œ.

• If x is a positive real number, Œ/x = Œ and (≠Œ)/x = (≠Œ).
1In particular, Œ ≠ x = Œ and (≠Œ) ≠ x = (≠Œ).
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• If x is a negative real number, Œ/x = ≠Œ and (≠Œ)/x = Œ.

• If x is a real number with x ”= 0, then x/Œ = 0 and x/(≠Œ) = 0.

• Œ ◊ Œ = Œ and Œ ◊ (≠Œ) = (≠Œ) and (≠Œ) ◊ (≠Œ) = Œ.

Finally, just as you cannot divide a real number by zero, there are certain
operations that are undefined when involving ±Œ:

• Œ - Œ and ≠Œ + Œ are undefined.

• Œ/Œ and ≠Œ/Œ and Œ/(≠Œ) and (≠Œ)/(≠Œ) are all undefined.

• 0 ◊ Œ and 0 ◊ (≠Œ) are undefined.

• 0/Œ and 0/(≠Œ) and Œ/0 and (≠Œ)/0 are undefined.

12.0.3 Limits equaling infinity
We’ll talk about limits equaling Œ via examples.

Example 12.0.3. Consider the function f(x) = 1/x
2. Here’s a graph of it:

As you know, f(x) = 1/x
2 is not defined at x = 0. However, does f seem to

“want” to do something as x approaches zero?
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As you see from the graph, f is “spiking” at x = 0, and becoming larger
and larger. In fact, if there’s a height H that you want to surpass, all you
have to do is make sure that x is small enough. For every small-enough x,
we know f(x) will be larger than H.

Thus, we say:
lim
xæ0

f(x) = Œ.

This is our first use of Œ in calculus class!
Example 12.0.4. We can talk about left and right limits equaling Œ, too.
Consider the function f(x) = 1/x. Here’s a graph of it:

As you can see, as we approach the origin from the right, the graph of f is
spiking upward again. We can talk about this righthand limit:

lim
xæ0+

f(x) = Œ.

However, as we approach x = 0 from the left, the graph of f is spiking
downward, and f is approaching ≠Œ. Thus, we say:

lim
xæ0≠

f(x) = ≠Œ.

Note that the lefthand limit and the righthand limit do not agree. Just like
limits for real numbers (and not ±Œ), because the two one-sided limits do
not agree, we can say:

lim
xæ0

f(x) does not exist.
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Example 12.0.5. We can talk about left and right limits equaling Œ, too.
Consider the function f(x) = 1/(x ≠ 0.2). Here’s a graph of it:

As you can see, as we approach 0.2 from the right, the graph of f is spiking
upward again. So

lim
xæ0.2+

f(x) = Œ.

However, as we approach x = 0.2 from the left, the graph of f is spiking
downward, and f is approaching ≠Œ. Thus, we say:

lim
xæ0.2≠

f(x) = ≠Œ.

Note that the lefthand limit and the righthand limit do not agree. Just like
limits for real numbers (and not ±Œ), because the two one-sided limits do
not agree, we can say:

lim
xæ0.2

f(x) does not exist.

There is nothing special about 0.2. In fact, for any real number C, we have
that

lim
xæC+

1
x ≠ C

= Œ, lim
xæC≠

1
x ≠ C

= Œ, lim
xæC

1
x ≠ C

= does not exist.
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12.1 Limit rules, revisited (this time with Œ)
Once you know how to add/multiply/divide/subtract with Œ, and once you
know the basic limits, you can begin to compute limits of more complicated
functions.

Here are the basic limit laws for infinity; they are like the old ones, just
with more caveats about being careful:

1. (New: Limits of 1/(x ≠ C)). For any real number C, we have that

lim
xæC≠

1
x ≠ C

= ≠Œ, and lim
xæC+

1
x ≠ C

= Œ.

(Make sure to take a look at Example 12.0.5 if you haven’t yet.)

2. (Scaling law). When the righthand side is defined, for any real number
m, we have

lim
xæa

mf(x) = m lim
xæa

f(x).

New point of caution: The righthand side is undefined if m = 0 and
if limxæa f(x) = ±Œ.

3. (Puncture law). If f(x) = g(x) away from a, then

lim
xæa

f(x) = lim
xæa

g(x).

4. (Product law) We have that

lim
xæa

(f(x) · g(x)) = lim
xæa

f(x) · lim
xæa

g(x).

New point of caution: Importantly, the righthand side is not defined
when multiplication is not defined—for example, 0 · Œ is undefined for
us. When the righthand side is undefined, you have to try something

di�erent from the product rule to determine the limit.

5. (Quotient law) We have that

lim
xæa

(f(x)
g(x) ) = limxæa f(x)

limxæa g(x) .

New point of caution: Importantly, the righthand side is not defined
when division is not defined—for example, 0/Œ is undefined. When
the righthand side is undefined, you have to try something di�erent

from the quotient rule to determine the limit.
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Remark 12.1.1. Limit laws also work for one-sided limits! This is a
good thing. For example,

lim
xæa+

(f(x) · g(x)) = lim
xæa+

f(x) · lim
xæa+

g(x).
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Example 12.1.2 (This is an example you should memorize the result
of). Let’s try to establish that

lim
xæ0

1
x2 = 0.

It su�ces to compute both one-sided limits, and to show that they are the
same. Here’s one:

lim
xæ0+

1
x2 = lim

xæ0+
( 1
x

· 1
x

) (12.1)

= lim
xæ0+

1
x

· lim
xæ0+

1
x

(12.2)

= Œ · Œ (12.3)
= Œ. (12.4)

The first line is just algebra. The next line is using the product rule for one-
sided limits. Then we are using the fact that we know already the one-sided
limits for 1/x. The last line follows from our rules about arithmetic with Œ.

And here’s the other one-sided limit:

lim
xæ0≠

1
x2 = lim

xæ0≠
( 1
x

· 1
x

) (12.5)

= lim
xæ0≠

1
x

· lim
xæ0≠

1
x

(12.6)

= (≠Œ) · (≠Œ) (12.7)
= Œ. (12.8)

In sum, we see that both one-sided limits agree, so 1/x
2 has a limit at 0. We

can conclude:
lim
xæ0

1
x2 = Œ.
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Example 12.1.3. Let’s compute

lim
xæ0+

1 + x

4x2 .

The fastest approach is to use the product law:

lim
xæ0+

1 + x

4x2 = lim
xæ0+

1 + x

1 · lim
xæ0+

1
4x2 (12.9)

= 1 · lim
xæ0+

1
4x2 (12.10)

= 1 · 1
4 lim

xæ0+

1
x2 (12.11)

= 1
4 lim

xæ0+

1
x2 (12.12)

= 1
4Œ (12.13)

= Œ. (12.14)

The first line is the product law. (12.11) is computing the limit of 1+x
1 . (This

is something you already knew how to do.) (12.12) is the scaling law. The
next line is algebra. (12.13) follows from our knowledge of the limit of 1/x

2

at 0. The last line is arithmetic using Œ.



10 LECTURE 12. LIMITS EQUALING Œ

Here is a di�erent, very tedious approach:

lim
xæ0+

1 + x

4x2 = lim
xæ0+

3 1
4x2 + x

4x2

4
(12.15)

= lim
xæ0+

1
4x2 + lim

xæ0+

x

4x2 (12.16)

= 4 lim
xæ0+

1
x2 + lim

xæ0+

x

4x2 (12.17)

= 4 · Œ + lim
xæ0+

x

4x2 (12.18)

= Œ + lim
xæ0+

x

4x2 (12.19)

= Œ + lim
xæ0+

1
4x

(12.20)

= Œ + 1
4 lim

xæ0+

1
x

(12.21)

= Œ + 1
4 · Œ (12.22)

= Œ + Œ (12.23)
= Œ. (12.24)

The first line is algebra, and the next line is the addition rule. Note that
we don’t know whether the sum will be well-defined2 at this stage, but we
proceed crossing our fingers. Then I kept simplifying the lefthand term
in the summation, knowing that lim 1/x

2 = Œ and using the scaling law.
Line (12.20) follows from the puncture law. Then I use the scaling law,
and then my knowledge of limxæ0+

1
x . The last few lines are following the

arithmetic of Œ.

2For example, if at the end we find a sum of the form Œ ≠ Œ, we are at a loss—this
expression is not defined.
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Example 12.1.4. Let’s compute

lim
xæ3+

5x

x ≠ 3 .

We have the following string of equalities:

lim
xæ3+

5x

x ≠ 3 = lim
xæ3+

5x · lim
xæ3+

1
x ≠ 3 (12.25)

= 15 · lim
xæ3+

1
x ≠ 3 (12.26)

= 15 · Œ (12.27)
= Œ (12.28)

The first equality is the product law for limits—note that we did not know3

that we are allows to use it until the second-to-last line, but we tried com-
puting it anyway (and got lucky that it worked!). (12.26) is evaluating the
limit for 5x, which we knew how to do already. (12.27) is using our knew
limit law for functions of the form 1/(x≠C). Note that C is also where we’re
taking the limit—this is an important part of the law.

The last equality is using the arithmetic rules for Œ.

Example 12.1.5. Let’s compute

lim
xæ3≠

5x

x ≠ 3 .

We have the following string of equalities:

lim
xæ3≠

5x

x ≠ 3 = lim
xæ3≠

5x · lim
xæ3≠

1
x ≠ 3 (12.29)

= 15 · lim
xæ3≠

1
x ≠ 3 (12.30)

= 15 · ≠Œ (12.31)
= ≠Œ (12.32)

3We did not know we could use it because we did not know whether the product
limxæ3 5x · limxæ3+ 1

x≠3 would yield something non-sensical like 0 · Œ upon simplification.
When the product is sensible, we can safely rely on the product law.
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The first equality is the product law for limits—note that we did not know4

that we are allows to use it until the second-to-last line, but we tried com-
puting it anyway (and got lucky that it worked!). (12.30) is evaluating the
limit for 5x, which we knew how to do already. (12.31) is using our knew
limit law for functions of the form 1/(x≠C). Note that C is also where we’re
taking the limit—this is an important part of the law.

The last equality is using the arithmetic rules for Œ.

4We did not know we could use it because we did not know whether the product
limxæ3 5x · limxæ3≠

1
x≠3 would yield something non-sensical like 0 ·Œ upon simplification.

When the product is sensible, we can safely rely on the product law.
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Exercise 12.1.6. Compute—using the limit laws above—the one-sided lim-
its

lim
xæ3≠

ln x

x ≠ 3 and lim
xæ3+

ln x

x ≠ 3 .

Does limxæ3
ln x
x≠3 . exist?

Exercise 12.1.7. Compute

lim
xæ0+

1
ex ≠ 1 and lim

xæ0≠

1
ex ≠ 1 .

Try to think this through without using the limit laws above—they won’t
help.

Does limxæ0
1

ex≠1 exist?
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I want to very carefully walk through this last exercise. How would we
compute

lim
xæ0+

1
ex ≠ 1?

Clearly the denominator is causing us trouble. The quotient law doesn’t
apply because the limit of the denominator is 0.

However, let’s think about what’s happening to e
x ≠ 1 as x approaches 0

from the right. When x > 0, we know that e
x

> e
0. In other words, e

x
> 1.

Thus, as x approaches 0 from the right, the denominator remains positive,
but shrinks to zero. (As x approaches 0 from the right, e

x shrinks in size,
and e

x becomes closer and closer to 1 while remaining larger than 1. As a
result, e

x ≠ 1 becomes closer and closer to 0 while remaining positive.)5

So 1
ex≠1 , as we shrink x to 0 from the right, is positive, and growing larger

and larger (because we are dividing 1 by smaller and smaller numbers). This
intuition suggests

lim
xæ0+

1
ex ≠ 1 = Œ.

Likewise, as x approaches 0 from the left, e
x is less than 1, but is growing in

size to 1. Thus e
x ≠ 1 is negative, but approaching 0. So we conclude

lim
xæ0+

1
ex ≠ 1 = ≠Œ.

We will see how to compute this more rigorously next time, when we also
talk about limits at x = ±Œ.

5Make sure you understand this!
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12.2 Preparation for Lecture 13: Finding ab-
solute extrema

Remark 12.2.1. What we do in lecture this week will run parallel to (and
not intersect, yet) what you will learn in these preparations. In your prepara-
tions and quizzes, you will practice another application of derivatives, which
is finding absolute extrema.

Here is a problem you might encounter in all kinds of situations, especially
in engineering, business, or medicine:

You have a way f(x) to measure outcome, and this outcome depends on
an input number x. What value(s) of x implement the best outcome?

Here are some examples:

1. x is the hourly wage of managers at your restaurant, and f(x) is a func-
tion measuring output of worker productivity. (This could be measured
by combining things like absences, restaurant revenue, tip percentages,
time required to complete a food order, or some numerical combination
of these.)

2. x is the concentration of Lithium salts like LiPF6 in an electrolyte
solution for batteries, and f(x) is a function measuring the e�cacy of
the resulting battery (this could be measured in voltage, or in longevity,
or some combination of various factors).

3. x is the dosage of insulin, and f(x) measures blood sugar levels in the
blood stream thirty minute after the insulin intake.

“Best” outcome is entirely subjective, and is in the realm of human sci-
ences more than mathematics. But once you decide what “best” means, you
can apply mathematics to solve the problem.

In preparing for Lecture 13 (and in labs this week) you’ll learn how to
find “best” outcomes when best means “the largest possible,” or “the smallest
possible” value of f(x). Mathematically, this translates into the problem of
finding absolute extrema of a function.

Definition 12.2.2. The absolute maximum of a function f is the largest
value that f takes (if such a value exists).

The absolute minimum of a function f is the smallest value that f takes
(if such a value exists).
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(Confusingly, we will sometimes also call x an absolute minimum/maximum
if f(x) is an absolute minimum/maximum. Be warned that, of course, x

and f(x) are two very di�erent things.)
An absolute minimum or maximum of f is called an extremum, or absolute

extremum of f .
(The plural of extremum is “extrema.”)

Remark 12.2.3. Often, we will restrict our attention to only a part of the
domain of f ; most often a closed interval. Then absolute minima/maxima
are the smallest/largest values that f takes on that closed interval.

12.2.1 Finding absolute extrema

Example 12.2.4. Below is a graph of a function, f(x):

≠6 ≠4 ≠2 0 2 4 6

≠4

≠2

0

2

4

I (arbitrarily) tell you that I am only interested in values of x between -5
and -1, inclusive. (That is, x must be in the interval [≠5, ≠1].)

Problem: For which values of x in [≠5, ≠1] is f(x) largest? For which
values is f(x) smallest?
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Let’s highlight the portion of the function that lies over that interval:

≠6 ≠4 ≠2 0 2 4 6

≠4

≠2

0

2

4

I’ve drawn thicker the portion of the graph where the x coordinate is in
[≠5, ≠1].

As you can tell from the graph, the largest value of f(x) on the interval
[≠5, ≠1] is obtained at an endpoint: x = ≠1.

Likewise, the smallest (i.e., most negative) value of f(x) on the interval
[≠5, ≠1] is obtained at the other endpoint: x = ≠5.

That was easy. Next, we note that our answers change based on the
interval we choose.

For example, what if we were only concerned with those x along the
interval [≠3.5, ≠1]?
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As drawn above, the minimum is obtained at the local minimum (the
trough). And the maximum is attained at the rightmost endpoint (at x =
≠1), while the other endpoint is neither a maximum nor a minimum.

Thinking about these examples, we realize how we should look for
extrema for di�erentiable functions on a closed interval, even if we
cannot visualize the graph of the function:

1. Find the critical points of f inside the interval, and compute the values
of f at those critical points.

2. Compute the value of f at the endpoints of the interval.

3. Compare these values to conclude which points are absolute extrema.

This is using the following principle: If f is di�erentiable, The extrema of
f are either critical points or endpoints.



12.2. PREPARATION FOR LECTURE 13: FINDING ABSOLUTE EXTREMA19

Example 12.2.5. Let f(x) = x
3
e

x. Find the absolute extrema of f along
the interval [≠10, 1].

Let us first find the critical points—i.e., the points where f
Õ(x) = 0. We

first take the derivative to find6

f
Õ(x) = (x3 + 3x

2)ex
.

Because e
x is always positive, f

Õ(x) equals zero only when x
3+3x

2 equals zero.
Factoring, this happens only when x

2(x + 3) equals zero. Thus, f
Õ(x) = 0

when x = 0 or x = ≠3.
At this point, it is important to check whether the critical points

are in the relevant interval. Indeed, both 0 and -3 are in [≠10, 1], so we
should compute their values. We have that

f(0) = 0, f(≠3) = (≠3)3
e

≠3 = ≠27
e3 .

(Note that I am not even checking which of these critical points are local
minima, maxima, or otherwise; I just care about which values are biggest or
smallest, so I go on.)

Now I just need to check what the values of f are at the endpoints of my
given interval.

We have
f(1) = (1)3

e
1 = 1 · e = e

and
f(≠10) = (≠10)3

e
≠10 = ≠1000

e10 .

The final step is to compare all the values we found:

(i) f(0) = 0,

(ii) f(≠3) = ≠27
e3 ,

(iii) f(1) = 3,

(iv) f(≠1) = ≠1000
e10 .

6I omitted the work; you are now expect to be able to compute the derivative!



20 LECTURE 12. LIMITS EQUALING Œ

The largest of these values is f(1) = 3 (the other values are 0 or negative),
so we conclude that the absolute maximum of f along the interval [≠10, 1]
is attained at x = 1.

But which of the four numbers above are smallest? Now we are in the
tough situation of comparing two negative numbers with strange expressions:

≠27
e3 and ≠1000

e10 .

Which is more negative? Well, e > 2, so e
10

> 210, while 210 = 1028. So

1000
e10 <

1000
1028 < 1.

This means
≠1000

e10 > ≠1.

This gives us some sort of comparison; it may be useful!
For the other value: Let’s note e < 3, so e

3
< 33, so e

3
< 27. Thus

27
e3 >

27
27 = 1.

This means
≠27
e3 < ≠1.

Thus,
≠27
e3 < ≠1 <

≠1000
e10 .

So the minimum is obtained at x = ≠3.
(Rest assured: You won’t always have to perform delicate inequalities

using e; I just wanted to show you the strength of what’s possible!)

Example 12.2.6. Find the absolute extrema of f(x) = x
3 + 3x

2 ≠ 2 along
the interval [≠1, 4].

Let’s find the critical points. We first find the derivative:

f
Õ(x) = 3x

2 + 6x.

This factors: f
Õ(x) = 3x(x + 2). So the critical points are at x = 0 and

x = ≠2 (because those are the x values for which f
Õ(x) equals zero.) Note
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that x ≠ 2 is outside the interval we are interested in, so we discard it as
a possible absolute extremum.

Now we compute the values of f at the critical points, and at the end-
points of the interval:7

f(0) = 03 + 3(02) ≠ 2 = ≠2.

f(≠1) = (≠1)3 + 3(≠1)2 ≠ 2 = ≠1 + 3 ≠ 2 = 0.

f(4) = (4)3 + 3(4)2 ≠ 2 = 64 + 48 ≠ 2 = 110.

Out of these values, clearly 110 is the largest, and -2 is the smallest. Thus,
we conclude:

The absolute maximum of f (along the interval [≠1, 4]) occurs at x = 4
with f(4) = 110.

The absolute minimum of f (along the interval [≠1, 4]) occurs at x = 0
with f(0) = ≠2.

For next lecture, I expect you to be able to compute the absolute extrema
for the following functions:

(a) f(x) = x
3 + 3x

2 along the interval [≠1, 2]

(b) f(x) = e
x3≠3x along the interval [≠3,

5
2 ].

(c) f(x) = 4x
4 ≠ 3x

3 along the interval [≠1, 3].

7By the previous paragraph, we ignore x = ≠2.


