Lecture 16

The mean value theorem and
logic

In preparation for today, you learned about the mean value theorem:

Theorem 16.0.1 (Mean Value Theorem). If f is differentiable, then for all
a # b, there exists ¢ between a and b so that

f(b) — f(a)
/ _ S\ J\S)
f (C) b_ a *
And then you proved for today (and proved on the quiz):

Proposition 16.0.2. If f is not a constant function, then there is some value
of z for which f'(x) # 0.
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16.1 Some logic

We're going to talk about logic for a second.

16.1.1 Implications

Here are two statements:
1. If R is a rectangle, then R is a square.
2. If R is a square, then R is a rectangle.

Only one of these statements is true!
Most meaningful logical statements can be written in the form

If BLAH, then BLERG

where BLAH and BLERG are statements with some truth value. To be
fancy, we often write instead

If P, then Q)

where P and () are fancier stand-ins for BLAH and BLERG. For example,
we obtained the above two statements by taking

1. P =“Ris arectangle” and () = “R is a square.”
2. Q = “R is a rectangle” and P = “R is a square.”
To be lazy, instead of writing “If P then @),” we may sometimes write
P = Q.
Warning 16.1.1. The following all mean the exact same thing:
o If P, then Q.
o If P is true, then (@ is true.
e Given P, we know () holds.

e P implies Q.
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e If we take P as a hypothesis, ) follows as a conclusion.

In the situation of P, (@) is true.

Suppose P. Then @) is true.

Whenever P is true, () is true, too.

P = Q.

Remark 16.1.2. Most useful mathematical statements are of the form P =
@ (or, equivalently, any of the above re-phrasings of this implication). For
example,

1. If f(z) = €", then f'(x) = e”.
2. If a number is even, then it is divisible by 2.

However, as you can see from Warning 16.1.1, the statement P —> () may
be rephrased in many different ways. This is nice as a matter of poetry and
of language; but it can be difficult for a student to pick up on the meanings
of statements.

16.1.2 Converses

Given a statement of the form P =— (), the converse is the statement
Q = P.

Example 16.1.3. The converse of “If R is a rectangle, then R is a square”
is the statement “If R is a square, then R is a rectangle.”

Consider the statement “Every square is a rectangle.” The converse state-
ment is “Every rectangle is a square .”

The converse of the converse of a statement is the original statement.

Warning 16.1.4. As you can see from the example, even if a statement is
true, the converse statement may be false!
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16.1.3 Contrapositives

The contrapositive of the statement P = () is the statement
not ) = not P.

Warning 16.1.5. “Not ()7 is an instance of mathematicians being lazy. For
example, if () is the statement

“R is a rectangle”
then not () would be the statement
“R is not a rectangle”

In fact, the shorthand “not Q7 would be better translated as “@ is not true.”
In other words, the contrapositive to P = @ is “(@) is not true = P
is not true.”

Example 16.1.6. 1. Consider the statement “If R is a square, then R
is a rectangle.” The contrapositive of this statement is “If R is not a
rectangle, then R is not a square.”

2. Consider the statement “If f(z) = sin(z), then f'(x) = cos(x).” The
contrapositive of this statement is “If f/'(z) does not equal cos(z), then
f(z) does not equal sin(z).”

3. Consider the statement “If x = 3, then # > 2.7 The contrapositive is
“If x < 2, then « # 37

The greatest fact in logic is: A statement is true whenever its contra-
positive is true. A contrapositive is true whenever the original statement
is.

Put another way, a statement is always logically equivalent to its
contrapositive.

Exercise 16.1.7. Find the contrapositives to the following statements:
(a) If f is not constant, then there is some point x at which f'(z) # 0.
(b) If f(x) is the function e®, then f always outputs a positive number.

(c) If x is an inflection point of f, then f”(z) = 0.
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16.2 Application: Functions with the same
derivative

Now we are going to prove a fantastic fact.

Proposition 16.2.1. If two functions f and g have the same derivative,
then f — ¢ is a constant function.

A “Proposition” is a fact that somebody has proven for you. It is true,
and you may use it freely. But I want you to not only know true facts; I
want you to know why they are true. So let’s see a proof of the proposition:

Proof. We first compute a derivative:

(f=9)=f-¢ (16.1)
= 0. (16.2)

This first equality is the addition rule for derivatives. The next equality uses
the fact that f and ¢g have the same derivative—that is, f/ = ¢'.
This computation shows us that f — g is a function whose derivative is 0.
Now we apply the contrapositive of our quiz: That is, if a function’s
derivative is 0, then it is constant! Applying the contrapositive to the func-
tion f — g, we conclude that f — g is constant. QED. ]

Example 16.2.2. Let’s find all functions whose derivative is cos(x).
We know one such function: f(z) = sin(z). If ¢ is any other function
with ¢'(z) = cos(x), we know that f — g is constant; in other words,

g(x) =sin(z) + C

for some real number C.
Examples of such g(x) would be functions like

g(x) = sin(z) + 10, g(x) = sin(z), g(x) =sin(x) — e, etc.

And any function with ¢'(x) = cos(x) is a function obtained by adding a
single number to sin(x).
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16.3 Application: Functions with positive deriva-
tives grow

Here is another intuitive, but very useful fact:

Proposition 16.3.1. Suppose that f is differentiable, and that f'(x) is al-
ways positive. Then whenever b > a, we have that f(b) > f(a).

In other words, if f has positive derivative, then f is increasing.

Proof. Suppose that f(b) < f(a) for some b > a. Then

-t

This is because the denominator is positive, while the numerator is 0 or
negative.
By the mean value theorem, there would then be some ¢ in [a,b] such
that f/(c) < 0. This violates our hypothesis that f’ is always positive.
Thus, it could not be true that f(b) < f(a) for some b > a. In other
words, for all b > a, we have that f(b) > f(a). QED. O

Example 16.3.2. Let f(x) = e” — 3. The derivative of f is always positive
because e*hing js positive. The proposition above tells us that f is always
increasing.
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16.4 Application: Comparing values by com-
paring derivatives

Here is another intuitive, but very useful fact:

Proposition 16.4.1. Suppose that f and g are two differentiable functions.
Suppose also that a is a number satisfying

1. f(a) > g(a), and
2. For all b > a, we have that f'(b) > ¢'(b).
Then f(b) > g(b) for all b > a.

In words, the proposition says that if f at least as large as g at a, and if
f has bigger derivatives than g from a onward, then f always remains bigger
than g.

Proof. By (2), we can conclude that f'(b) — ¢'(b) > 0 for all g > a.
Applying Proposition 16.3.1 to the function f — g, we can thus conclude
that

f(0) = g(b) > f(a) — g(a)
for all b > a. The righthand side is > 0 by (1), so

f(b) —g(b) >0
for all b > a. In other words,
f(b) > g(b) for all b > a.

QED. O

Example 16.4.2. Let’s compare the functions f(z) = e* and g(z) = = + 1.
These functions agree at a = 0. But f'(b) = ¢®* > 1 whenever b > 0.
Meanwhile, ¢ = 1. So f’ has bigger derivative when b > 0. In other words,

f(b) will always be larger than g(b) for positive choices of b.
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16.5 Preparation for Lecture 17: Curve-sketching

Without using a graphing calculator, let’s visualize the function

2 +1
2 —2

fx) =

using tools of calculus!

16.5.1 Asymptotes

First, let’s find the vertical and horizontal asymptotes. Remember, you do
this by computing

1. The limits at +c0 (to find horizontal asymptotes), and

2. The limits where f looks undefined (there are vertical asymptotes if
this limit is +00).

(1) You can compute that the horizontal asymptote is 1, and that f
approaches 1 near both co and —oo. Here’s the computation for the limit at
—oo; I'll leave the other limit to you!

> +1 i 2+ 1

1+ L

= lim - i H (16.4)
lim, , o1+ 12

= z 16.5
lim,_, 1 x% ( )
140

= 16.6
T 0 (16.6)

—1 (16.7)

(You do need to compute both limits, because there may be horizontal
asymptotes with different heights.)

(2) f potentially has asymptotes where the denominator is zero—that is,
when 2 = ++v/2. There are four one-sided limits to compute here. 1 will
compute one for you, and tell you the answer for the rest:
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241 241
lin CEQL = lim. . (16.8)

lim 2?2 +1

= __eov2 (16.9)
1 s \/*7 .T - 2
241

=" (16.10)
3
o (16.11)

= . (16.12)

The thing that requires most explanation is probably how we got to line (16.10).
As x approaches —v/2 from the left, 2 approaches 2 from the right; that is,
22 is shrinking toward 2. Thus, 22 — 2 is approaching 0 from the right. This
is why the denominator becomes 0.

The three other one-sided limits can be computed to be

2+ 1 22 +1 2241
lim = —00, lim = —00, lim = 00.

T—— f+$2—2 T2~ 22 -2 $_>\[+£B2—2

Based purely on these computations, we can begin to visualize the graph

of f(x):

Thbe dashed lines show where the asymptotes are; the thick blue lines are
the beginnings of the graph. Note that I haven’t yet drawn the parts of the
graph near horizontal 4+o00; this is because while I know the asymptotes, I
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don’t know how f approaches the asymptotes (for example, f could oscillate
close to the asymptote, or approach from above, or from below).

16.5.2 Concavity

Now I'd recommend computing the concavity of the function to get a good
feel for shape.

Remember, concavity is dictated by whether the second derivative is pos-
itive or negative. So let’s compute the second derivative.

First, we compute f:

Ci J_r ;)’ _ @+ 1)@’ _(32:2 - (52 —2)(z? + 1) (16.13)
_ (20)(a? —(ig - ;2);;)(1«2 1) 614
) (233)(952(;22_—25352 1) 615
_ m (16.16)
_ (x;f"’;)z (16.17)
The second derivative is computed as follows:
(L. S
- (0 =2~ o e o)
- (0212 = o) -
= (—6)(:5;; i)é)_fz =2) (16.22)
62— 2)(a? +2) (16.23)

@ -2
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When is this fraction positive, and when is it negative?

The denominator, (z% — 2)%, is always positive, so we can focus on the
numerator, 6(z% — 2)(z% + 2).

(i) We see that 22 + 2 is always positive, while 22 — 2 is positive whenever
x? > 2. That is, whenever |z| > /2. At this point, we know that the graph
of the function must be concave up when |z| > v/2. So we can begin to draw
this portion of the graph:

(ii) 6(x? — 2)(z% + 2) is negative precisely when || < v/2, by the same
reasoning as before; so we know that the function will look concave down
in this region. So we can conclude the graph probably looks like one of the
following;:
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At this point, there is still ambiguity in what the graph actually looks like.
Where is the local maximum in the middle? At what x-coordinate? And at
what y-coordinate?

But, depending on the kind of information you're looking for, you might
be satisfied with a vague sketch as follows:

T=—2 V2

X

|
|
|
|
|
|
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

If you want more information, or are asked for more information, you can
make a more accurate sketch by finding out things such as:

e Identifying critical points.
e Finding the y- and z-intercepts.
e Labeling inflection points (in our case, we had none).

Let me emphasize one thing: Your computations by hand are often
more reliable than what graphing calculators will show you. Being
able to identify the critical points, the asymptotes, et cetera, can even tell
you what frame you should use to look at a graph (e.g., what x values and
what y values should your window hold?).

Here is a summary of curve-sketching: Identify the asymptotes, iden-
tify the concavity of the important regions, and then collect more information
if you need (critical points, intercepts, et cetera).

Example 16.5.1. You are told that a function f has the following properties:

(a) lim, o f(z) = 3.
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(b) lim, e f(z) = 2.

(c) f is continuous and defined everywhere.

(d) f"(x) is positive when z is between —1 and 5

(e) f"(x) is negative when z < —1 and when x > 5.

Sketch the graph.

Solution: Based on (a) and (b), we can first draw the horizontal asymp-
totes, though we don’t know how f approaches these asymptotes yet.

We know there are no vertical asymptotes by (c). By (e), we know that the
function looks concave down outside of the interval [—1, 5], so we can begin
to draw as follows:

By (d), the rest of the function is concave up. So we sketch a “bowl up”
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or

(With the information given, it is impossible to draw the graph of f with
complete accuracy, but you see that you get a “feel” for what it looks like!)

For next time, I expect you to able to sketch the following graphs

(a) f(z) = - (explaining *why™* the sketch looks the way it does)

x2-2

(b) f(z) = == (explaining *why* the sketch looks the way it does)

e’ —3

(¢) A continuous function f satisfying the following properties:

(a) lim, o f(z) =5
(b) lim, oo f(z) = —5

(c) lim, o+ f(z) =00

(d) lim, o- f(x) = 00

(e) f"(x) <0 when x is less than -10,

(f) f”(xz) > 0 when z is between —10 and 2,
(g) f"(z) > 0 when z is larger than 2.
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16.6 Appendix: Concavity near oo

In class, the following question was asked:
If T know
e lim, , f(z) =3 and
o ['(z) <0,

why do I know that f has to look like

DRAWING I:

near co? For example, why couldn’t f look like the following?

DRAWING II:

In this appendix, I claim: Drawing IT can never happen while f satisfies
the two properties above. That is, if f is concave down and has a horizontal
asymptote, f must approach that asymptote from underneath the asymptote,
not from above.

Here is a great place for proof. Let’s try to put into mathematical language
what picture you're drawing in Drawing II: You seem to be drawing a function
with
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1. f” <0 for x larger than (for example) 5, and
2. f" <0 for x larger than 5.

I want to emphasize that the role of 5 could be swapped with any number;
so let’s just call that number a from now on.
I claim the following:

Proposition 16.6.1. Suppose that f is a function such that, for some real
number a, we have

1. f"(xz) <0 for all x > a, and
2. f'(z) <0 for all z > a.

Then lim,_, f(xz) = —oo. In particular, f does not have a horizontal asymp-
tote as x — o0.

Proof. Let b be any number bigger than a, and let’s let M = f’(b). (That is,
M is the slope of the tangent line to f at b.)
Then we can define another function called

g(x) = M(z —b) + f(b).

The graph of g is a line—a line with slope M, and which passes through the
point (b, f(b)).

Above, the graph of g has been represented as a dashed green line, and
the graph of f as a solid blue curve. Note g has negative slope because of
hypothesis 2. of the Proposition.

Now, because f”(x) < 0, we know that f’(z) will be less than f'(b) for
all x > b. This is a consequence of one of the statements we saw last lecture
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(as an application of the mean value theorem)! It’s because you can think
of h = f'(x) as a function; and when h/(z) < 0 for all x > a (because of
Hypothesis 1), we know that h is decreasing in value for all x > a, so h(x)
will be less than h(b) whenever x > b.

Now, because f'(z) < f'(b) = ¢'(z) for all z > b, we see that f(z) < g(z)
for all x > b. (This is using another consequence of the mean value theorem
from last lecture.)

So if f(z) < g(x) for all x > b, we conclude that

lim f(z) < lim g(x).

T—00 T—00

But g(z) = M - (x — b) + f(b). So we see that

lim g(z) = M - (lim —b) + f(b) (16.24)
=M - (0o —b) + f(b) (16.25)
= M - (c0) + f(b) (16.26)
— —00 + f(b) (16.27)
= —o0. (16.28)

(Note that M - 0o = oo because M < 0.)
Putting everything together, we see

lim f(z) < lim g(z) = —c0

T—r00 T—00

so lim, o f(2) = —00. O]



