
Lecture 29

Exponential growth and decay

We are now familiar with derivatives and integrals.
The rest of the class will be about applications of these ideas—either to the

sciences, or to other mathematically interesting problems.
It is often the case that the amount of something not only changes, but changes

proportionally to how much something there is.
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29.1 Example: Viruses

For example, suppose that P (t) is a function telling you how many people are infected
with a virus at time t. (Let’s say t is in hours, so P (t) is how many people are infected
at time t hours. For concreteness, we can let t = 0 correspond to 12:01 AM of January
1, 2020.)

How would you expect P (t) to be changing, especially if the virus is brand new?
A naive model might assume that every infected person, on average, infects three

new people per hour. (This would be an incredibly contagious virus.)

P (t) dP
dt

(The number of people infected) (The rate at which new people are being infected)
1 3 per hour
2 6 per hour

1000 3000 per hour

Note that the numbers in the righthand column are proportional to the numbers in
the lefthand column. In fact, if we assume that every infected person is infecting 3
new people per hour, we always have

dP

dt
= 3P (t).

Can you find a function P (t) such that this equation (relating the derivative of P to
P itself) holds?

Note that if we didn’t assume that each infected person can cause 3 new infections
per hour, but say, 0.1 new infections per hour, then we would find that

dP

dt
= 0.1P (t).

More generally, if k is how many new people one infected person can infect per hour,
we have

dP

dt
= kP (t). (29.1)

The bigger the k, the more infections the virus.

Remark 29.1.1. There is something that becomes unrealistic about the assumption
that every infected person can infect 3 new people per hour. For example, there
are only so many people in the world! And if all the infected people are clustered
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together, they don’t have much of a chance to spread the virus to new people either—
on the other hand, the larger the number of infected people, the more likely that
clusters will form, slowing new infections. So eventually there’s no way that a virus
can sustain this growth of 3 new infections per infected person. But, initially, it’s
not a bad model.

Remark 29.1.2. The above model doesn’t have to be about viruses; it can be about
any population of living things that can grow without restrictions. For example, if
you assume that, on average, each human creates about 1 new human every 40 years
(so about 0.025 new humans per year) the human population P (t) at time t (where
t is in years) would be be a function such that

dP

dt
= 0.025P (t).
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29.2 Example: Growth of money

Most savings accounts will give you interest. For example, if you have an annual
interest of 0.2 percent on your savings account1, and if you have B dollars over the
course of a year in that account, your bank will then give you (for free!) 0.2 percent
of B dollars. That is, after a year, the amount of money in your account will be

B + (0.002)B.

This isn’t very much money. Even if you had 10,000 dollars in your account (which
is a lot!) interest gained would only be 20 dollars over the course of the year.2

If you don’t deposit any new money into your savings account, how is your account
balance changing? Very roughly speaking, it’s changing at about (0.002)B per year,
where B is the amount of money that’s actually in there over a year. Thus,

annual rate of change of B(t) = 0.002B(t).

A year is a long time. To be able to do calculus, we want “instantaneous” rates of
change, so we may want to consider a model that tells us how much our bank balance
is changing per day, or per hour, or per minute (or better: per microsecond). And,
in fact, it is quite convenient to model savings accounts as though they continuously
give you interest, so that

instantaneous rate of change of B(t) = kB(t)

for some “instantaneous” interest rate k. (It turns out that if your annual interest
rate is R, then k = ln(1 + R). So for example, our example had R = 0.002, so
k = ln(1.002). This is about 0.0019, so only a little less than R itself.) Writing the
righthand side in more familiar notation, we have that

dB

dt
= kB(t). (29.2)

1For savings accounts, interest can typically range from somewhere between 0.01 and 2 percent.
Big banks tend to have worse rates, while credit unions and online-only accounts tend to have the
best rates.

2By the way, money devalues as a result of inflation, and the interest of most savings accounts
does not keep up with inflation; meaning that while you might feel like you’re making money, your
money is actually losing value by just sitting and accruing interest in most savings accounts.
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29.3 Example: Radioactive decay

Radioactive material loses mass—this is because radioactive material turn into radi-
ation.

Now, how much radioactive material is lost/radiated? Well, if a 5 gram sample
is losing mass at about 1 gram per year, then a 10 gram sample would lose mass at
2 grams per year. In this example,

Rate of change of mass = 0.2mass.

Or, if M(t) is a function for how many grams of (for example) Uranium is in a sample
at time t, we have that

dM

dt
= kM(t) (29.3)

for some constant t. Note that because mass is decreasing, k is now a negative
constant (unlike the previous examples).
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29.4 The di�erential equation

All three examples are important. The virus example is obviously salient these
days, but more generally, it is important to be able to model population growth for
various species (and certainly for humans). Wouldn’t you like to be able to predict
the population of the world, or of the country, ten or fifteen years out from now?

The money example is important because you might want to plan for retirement
with some idea of how much your money will have grown by then.

The radioactive decay example is also important—this is how we use carbon
dating to determine the age of organic samples, for example. (How do you think we
know how old certain samples are?)

The beauty is that they are all modeled by the same kind of equation:

df

dt
= kf(t) (29.4)

where f is some function we’re interested in.

Exercise 29.4.1. Can you think of a function f(t) that satisfies Equation 29.4?
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29.5 The solution

You can take the following theorem for granted:

Theorem 29.5.1. If f is a function whose derivative satisfies Equation (29.4), then
f must be a function of the form

f(t) = Aekt

where A = f(0). (Note that k is the same constant as in (29.4).)

The theorem is great because it immediately gives mathematical models for all
the three problems we were interested in.
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29.6 Modeling virus spread (in early stages)

Let’s say you know that there are 5 people infected with a disease on day 0, but you
are not sure about the infection rate of the disease. We can see how quickly this
virus grows by using di�erent values of k. (Roughly speaking, if you think that each
infected person produces R new infections every day, it turns out you could model
k by ln(1 + R).)

Figure 29.1 is a table of the values

f(t) = 5ekt

for various values of k.
Very, very roughly, this models the growth of a disease wherein an infected person

infects about k humans per day. This heuristic becomes a little inaccurate for larger
values of k (like 0.7), but that’s okay.

As you can see, changing k makes a huge di�erence in how many people are
infected by day 7, by day 14, by day 21. I hope it’s sobering to think that, in a span
of 14 days (e.g., this year’s Spring Break) changing the value of k can result in either
20 people being infected, or 5,000 people. If k is big enough, the infection numbers
become (unrealistically) gargantuan after 31 days.

I also want to emphasize that this k is not some number inherent to the virus; by
changing our behaviors, we can change (on average) how many new infections one
infected person can cause. (For example, if you are an infected person, you could
choose to stay at home, or you could choose to go to a packed dance party every
night. If every infected person made the right choice, k would be small. If everybody
made the wrong choices, k would be large.)

Finally, this also illustrates why delayed public policies—even if delayed by just
one week—can have disastrous consequences. In only the first seven days in the above
table, good behavior might lead to only 10 total infections, while bad behavior might
lead to 166, or 671 total infections. To put things in perspective: The United States
has known about this virus since January. States like Alabama (whose infection
rates per capita rival those of Washington State and New York) did not implement
a stay-at-home order until April.

Remark 29.6.1 (This model is only good for the early stages of an outbreak). The
table also shows some shortcomings of this model. For instance, when k = 0.7, the
model predicts nearly 7 billion infections by day 30. The current world population
is about 7.8 billion. Doesn’t that seem crazy?
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Indeed, no virus, and no population, can grow unfettered. A real model should
account for certain constraints (like a virus can’t infect more people than the number
of people on earth). We’ll see one way to do this next class.

Let me just say that this model we’re using is useful for the early stages of a
virus, when there is ample opportunity to spread and there is reason to expect that
k does not experience huge variability.
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Day 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 k value
0 5 5 5 5 5 5 5 5
1 5 6 6 7 7 8 9 10
2 5 6 7 9 11 14 17 20
3 5 7 9 12 17 22 30 41
4 5 7 11 17 25 37 55 82
5 5 8 14 22 37 61 100 166
6 5 9 17 30 55 100 183 333
7 5 10 20 41 82 166 333 671
8 5 11 25 55 123 273 608 1352
9 5 12 30 74 183 450 1107 2723
10 5 14 37 100 273 742 2017 5483
11 5 15 45 136 407 1223 3675 11042
12 5 17 55 183 608 2017 6697 22235
13 5 18 67 247 906 3326 12203 44776
14 5 20 82 333 1352 5483 22235 90169
15 5 22 100 450 2017 9040 40515 181578
16 5 25 123 608 3009 14905 73824 365652
17 5 27 150 820 4489 24574 134516 736333
18 5 30 183 1107 6697 40515 245104 1482793
19 5 33 224 1494 9991 66799 446609 2985978
20 5 37 273 2017 14905 110132 813774 6013021
21 5 41 333 2723 22235 181578 1482793 12108738
22 5 45 407 3675 33171 299371 2701825 24384004
23 5 50 497 4961 49486 493579 4923046 49103355
24 5 55 608 6697 73824 813774 8970374 98882013
25 5 61 742 9040 110132 1341686 16345087 199123922
26 5 67 906 12203 164298 2212067 29782690 400986337
27 5 74 1107 16472 245104 3647082 54267600 807487322
28 5 82 1352 22235 365652 6013021 98882013 1626079781
29 5 91 1651 30015 545489 9913796 180174775 3274522561
30 5 100 2017 40515 813774 16345087 328299846 6594078672
31 5 111 2464 54690 1214008 26948492 598201321 13279000000

Figure 29.1: A table of the values of f(t) = 5ekt for various k and various t (t is
measured in days).
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29.7 Exponential growth

The function
et

and its relatives,
f(t) = Aekt

grow very, very fast (when k > 0). By grow, I mean that if t is large enough, then
small changes in t can result in huge changes in the value f(t).

Let’s compare how Aekt grows to how, for example, g(t) = 5t grows. No matter
how big t is, if I change t by 0.1, g(t) changes value by 5 ◊ 0.1 = 0.5. However,

f(t + 0.1) ≠ f(t) = Aek(t+0.1) ≠ Aekt (29.5)
= Aekt+0.1k ≠ Aekt (29.6)
= Aekte0.1k ≠ Aekt (29.7)
= Aekt(e0.1k ≠ 1) (29.8)
= f(t)(e0.1k ≠ 1). (29.9)

Thus, if t is large enough, then the di�erence between f(t + 0.1) and f(t) is large as
well. You can certainly expect the di�erence to be larger than 0.5!

In fact, exponential functions like f(t) = Aekt will eventually grow faster than
any polynomial. For example,

lim
tæŒ

Aekt

x10 = Œ

(and this limit is Œ regardless of what polynomial we put in the denominator).
That this limit is Œ means tells us that the numerator function grows faster than
the denominator function as t gets big.

In everyday language, “exponential” is used to me “really quick” or “really big.”
In math, to grow exponentially means to grow as fast as Aekt does (for some k).
More rigorously, we say that a function g grows exponentially if there is some A and
k such that

lim
xæŒ

Aekt

g(t)
is finite.

In the zoo of familiar functions, you should think of these Aekt as very, very
quickly growing animals.
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Remark 29.7.1. Note that if k = ln 2, we have that

Aekt = Aeln 2t = A(eln 2)t = A2t.

So in fact, any function of the form
Abt

(note that the variable t is the exponent, while A and b are just constants) is thus
an “exponential” function.
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29.8 Preparation for next time

I want you to upload solutions to the following problems by 10 PM on Monday, April
13.

29.8.1

Let f(t) = Aekt. (As before, A and k are just constant real numbers. We will assume
both A and k are positive.)

(a) If t is in units of days, how many days does it take for f(t) to double in value?
Your answer should be in terms of k and some other functions and numbers you
know.

(b) At what value of t do we have that f(t) = 2f(3)?

29.8.2

Let M(t) be the mass of some radioactive material after t years of radioactivity. As
we saw before, we know that

M(t) = Aekt

for some negative k, while A = M(0) is the mass of the material at 0 years’ time.

(a) In terms of k, how many years does it take for M(t) to halve in value? (This is
called the half-life of the radioactive material.)

(b) At what value of t will we have that M(t) = 1
2M(3)?

29.8.3

At t = 0, Rafael invests 100 dollars into an index fund. The value of Rafael’s
investment is modeled by the function

f(t) = 100ekt

where f is in dollars and t is in years.

(a) Assume Rafael is 30 years old at t = 0. If k = ln(1 + 0.05) (this models about
5 percent annual interest), how much money does Rafael have at the age of 65,
when he retires? You can use a calculator to round to the nearest dollar.
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(b) Rafael’s friend, Susana, also invests 100 dollars into a fund with k = ln(1+0.05).
But she does this at the age of 35. How much will her investment be worth when
Susana is 65 years old?

(c) How much of a di�erence, in dollars, did waiting 5 years make?

29.8.4 (Plus One)

Note: The function arcsin(x) is sometimes written sin≠1(x); this is how you may
have learned it in precalculus.

(a) Draw the graph of sin(x) above the interval [≠2fi, 2fi].

(b) Draw the graph of arcsin(x). Be very explicit about where the domain of your
graph is.

(c) If x is a number between -1 and 1, what is sin(arcsin(x))?

(d) What is arcsin(sin(x)) when x is a number in the interval [≠fi/2, fi/2]? Does
your answer change if x is not in this interval?


