
Lecture 30

Logistic functions and logistic
distributions, I

30.1 Review of last time
Last time, we started talking about one way to model the spread of a virus.1 There
were three steps to this:

1. Positing how the function P (t)—which tells us the number of infected people
at time t—should behave. The first thing we started with was, “on average,
every infected person infects k new people per unit time.”

2. Writing down an equation that turned this intuition into mathematics. We
saw:

dP

dt
= kP (t)

of, equivalently, P Õ = kP . In words, this equation says that the rate of change
of P (t) is proportional to P (t) itself; that is, how quickly the virus is spreading
is proportional to how many people have the virus. (The more people that
have it in a given moment, the more new people are about to get it.)
This kind of equation is called a di�erential equation because it involves the
function’s derivatives. Note that the natural, intuitive equation that arose from
step 1 isn’t some explicit formula like P (t) = t2, but some weird equation that
involves derivatives. This happens all the time in the sciences; it’s often easier
to say what the derivative should do, rather than what the function is.

1It turned out that the mathematics for modeling this was identical to the mathematics modeling
population growth, and growth of an investment, and radioactive decay!
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3. The last step was a theorem: I just told you (without proof) that every function
P (t) satisfying the above di�erential equation is of the form

P (t) = Aekt

where A is some real number and k is the constant from the previous di�erential
equation.

In fact, this is the process for almost all modeling of dynamical systems, with step
3 usually being the most di�cult. Indeed, most interesting physical systems are not
modeled by a nice equation like P (t) = Aekt. If you ever take a serious mathemat-
ical modeling class involving dynamical systems, you’ll learn how to study systems
without having a formula for their solutions.

30.2 What you read for this time

Exponential functions grow fast. A function of the form Aekt is called an expo-
nential function. For example, 2t is an exponential function (by setting A = 1 and
k = ln 2). In your reading for this time, you read that exponential functions grow
very quickly—as t gets bigger, P (t) gets really big, and fast.

Exponential functions grow faster when you change k. Moreover, this
growth rate depends on k in a sensitive way, too. Just increasing k by a little can
have huge consequences. You read that our everyday actions can influence k for the
coronavirus, and it’s important to take action early on. That’s why the days, the
weeks, and (in very uncoordinated and poorly led places like the United States) the
months of delayed response can have disastrous public health consequences.

Exponential functions are only good at modeling early parts of an
outbreak. Viruses can’t spread indefinitely—for one thing, there are only so many
human beings to infect. So obviously, Aekt (whose value will quickly surpass the
population of human beings) can’t be a super-accurate model for the later stages of
an outbreak.

30.3 Today: The logistic function
We’re going to see how to fix this last problem. We’ll look for a function P (t)
that tells us how many people are infected at time t, but satisfying some di�erent
properties from last time.
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Last time, I told you that exponential functions (those for which P Õ = kP ) are
good at modeling the beginnings of an outbreak. So, what should happen toward
the “end” of an outbreak? Well, the number of infected people total should stabilize,
as there are no new infections possible. In other words, we would expect P Õ to equal
zero eventually.

Let’s suppose that we want the growth rate of P to look like k as before, but
we suppose that there’s some “maximum” possible number of infected people, which
we’ll call K.

Then we’re looking for a function P (t) that satisfies the following properties:

(a) When P (t) is small, we expect P Õ(t) to be very close to kP (t).

(b) When P (t) is very close to K, we expect P Õ(t) to be very close to zero.

At this stage, we have completed Step One of modeling our problem—we’ve identified
some criteria we’d like P to satisfy.

Now, Step Two: Writing down a di�erential equation. Here is an equation that
fits these two criteria.2

dP

dt
= k

K
P · (K ≠ P ).

Let’s see why this fits the above two criteria. The key is to look at the term in the
parentheses.

(a) First, suppose that the value of P is small, so that P (t) ¥ 0. Then the equation
above looks like

dP

dt
¥ k

K
P · (K ≠ 0) (30.1)

¥ k

K
P · K (30.2)

¥ kP. (30.3)

More rigorously, if t is a time at which P (t) is small, then the slope P Õ(t) at t is
very close to kP (t).

2Be careful: The k, K are constants, but P is a function. If you like, you can write in P (t) each
time you see P .
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(b) Next, if the value of P is very close to K, so P (t) ¥ K, then we have that

dP

dt
¥ k

K
P · (K ≠ K) (30.4)

¥ k

K
P · 0 (30.5)

¥ 0. (30.6)

That is, if P (t) is close to K at t„ then P Õ(t) is close to 0 at t.

So we are looking for a function that satisfies the di�erential equation
dP

dt
= k

K
P · (K ≠ P ).

As it turns out, we can find one:

Theorem 30.3.1. Let k and K be positive numbers. If P (t) is any function satis-
fying the di�erential equation

dP

dt
= k

K
P · (K ≠ P ),

such that P takes on only positive values, then P (t) is given by a function

P (t) = K

1 + e≠k(t≠t0) .

Here, t0 is the (unique) inflection point of P (t).

Remark 30.3.2. If you ever take a di�erential equations class, you will learn how
to find functions that solve particular di�erential equations.

Definition 30.3.3. Any function of the form

P (t) = K

1 + e≠k(t≠t0) .

(where k and K are positive numbers, while t0 is any number) is called a logistic
function.

The number k is called the growth rate, and K is called the carrying capacity.

Remark 30.3.4. By the way, the logistic di�erential equation is often written in
the following (equivalent) form:

dP

dt
= kP · (1 ≠ P

K
).
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Example 30.3.5. The following are all examples of logistic functions:

1. 1
1+e≠t

2. fi
1+e≠3t

3. 20000
1+e≠0.2(t≠100)

4. 3
4+e≠2(t≠1)

Make sure you can write down what the values of k, K, t0 are in each of the examples
above.

30.4 What the logistic function looks like

So, let’s choose constants k, K, t0, and study the logistic function

P (t) = K

1 + e≠k(t≠t0) .

Remark 30.4.1. We can use our curve-sketching techniques to draw this curve.
As t æ Œ, we see that the denominator becomes 1 + ekt0 limtæŒ e≠kt; because the
limit of e≠t is 0 as t æ Œ, we conclude that the denominator goes to 1. Thus,
P (t) has a horizontal asymptote of height K as t approaches infinity. Likewise, as
t approaches negative infinity, the denominator approaches 1 + Œ, so P (t) has a
horizontal asymptote of height 0 as t æ ≠Œ. Finally, every number involved is
positive, and ewhatever is positive, so we know P is always above the line y = 0.

Some calculations of derivatives and second derivatives show that P Õ(t) is always
positive (so the slope is always positive), and that there is a unique inflection point
where P switches from concave down to concave up. Being careful about taking the
second derivative, you’ll see that the inflection point happens exactly at t = t0.
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Putting all this together, here is a graph of the logistic function:

y = 0

y = K

t0

(t0, K/2)

As you can see, the graph has two horizontal asymptotes of heights 0 and K. As
you move forward in time (starting in the lower-left corner of the graph), the value
of P (t) begins close to 0, but then climbs, and then flattens: The value of P (t)
approaches K as we move forward in time.

The graph has a unique inflection point, given at time t = t0, as indicated.
Moreover, the value of P (t) at the inflection point is K/2—i.e., half the carrying

capacity.
So we’ve seen the appearance of t0 and of K in the above graph; but where does

the growth rate k play a role? To see this, here are graphs of logistic functions with
the same t0 and K, but with varying k:

1.
y = 0

y = K

t0

(t0, K/2)

(k small)
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2.
y = 0

y = K

t0

(t0, K/2)

(k medium-sized)

3.
y = 0

y = K

t0

(t0, K/2)

(k large)

4.
y = 0

y = K

t0

(t0, K/2)

(k huge)

As you can see, as k (the growth rate) is larger, the graph looks steeper near the
inflection point. Thus, even if the carrying capacity is all the same (so that all the
graphs approach K as t increases), we see a much more sudden jump toward the
carrying capacity when k is larger.

In terms of the spread of viruses: Do you want to see the new cases of the virus
all at once? (This is what happens when k is very large.) Or, would you rather see
new cases at a more gradual pace? (This is what happens when k is small.) For
example, do our hospitals want to see 1,000,000 new patients in a span of a day? Or
do we want to see 1,000,000 new patients coming in over a span of twenty days?
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30.5 Comparing to actual data
So, if we keep track of the number of cases of a new virus, do we get graphs that
actually look like a logistic function? See the following pages.
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Figure 30.1: H1N1 cases in Portugal, 2009
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Figure 30.2: H1N1 cases in Canada, 2009
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Figure 30.3: H1N1 deaths in Canada, 2009
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Figure 30.4: Covid-19 cases in Hubei Province (China), 2020
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Figure 30.5: Covid-19 cases in South Korea, 2020
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Figure 30.6: Covid-19 cases in USA, 2020
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Figure 30.7: Covid-19 cases in various countries, 2020
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30.6 Preparation for next time

30.6.1
Let P (t) be a logistic function. Compute its derivative.

30.6.2
Verify that there is exactly one inflection point for the logistic function, occurring at
t = t0.

30.6.3
Instead of P (t), consider the function that tells us how quickly P (t) is changing
at any give moment—that is, the function that tells us how quickly the number of
infections is increasing at time t. At what value of t does this function achieve its
maximum? What is this maximal rate, in terms of k, K and t0?

30.6.4 (Plus One)
Note: The function arccos(x) is sometimes written cos≠1(x); this is how you may
have learned it in precalculus.

(a) Draw the graph of cos(x) above the interval [≠2fi, 2fi].

(b) Draw the graph of arccos(x). Be very explicit about where the domain of your
graph is.

(c) If x is a number between -1 and 1, what is cos(arccos(x))?

(d) What is arccos(cos(x)) when x is a number in the interval [0, fi]? Does your
answer change if x is not in this interval?


