
Lecture 31

Logistic functions and logistic

distributions, II

31.1 Review of last time

Last time, we tried to improve on our model of virus outbreaks. We were motivated
by trying to find a function P (t) for which

1. When the value of P (t) is small, P (t) looks like an exponential function. That
is,

P (t) ¥ 0 =∆ P Õ = kP.

2. When the value of P (t) is near the carrying capacity K, P (t) looks flat. That
is,

P (t) ¥ K =∆ P Õ = 0.

One simple way to write these two requirements as a di�erential equation was

P Õ(t) = k

K
P · (K ≠ P ).

Then, I stated a theorem that any function P satisfying this di�erential equation
must be given by the formula

P (t) = K

1 + e≠k(t≠t0) .

Any function of this form is called a logistic function.
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The graph of the logistic function looks like this:

y = 0

y = K

t0

(t0, K/2)

At time t = t0, we have an inflection point. The slope at the inflection point is
dictated by k.

We then compared the graph of the logistic function to actual data of confirmed
cases of H1-N1, and of Covid-19. We saw that indeed, the graphs of actual data
looked roughly like logistic functions.

Today, we’re going to study the derivative of the logistic function.
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31.2 Derivative of the logistic function

Let’s begin with an exercise.

Exercise 31.2.1. Let
P (t) = fi

1 + e≠3(t≠5) .

What is the slope of P at the inflection point?

Solution. We know the inflection point occurs at t0, which in this case is 5. But
how do we find the slope there? We have to take the derivative of P :

P Õ(t) =
3

fi

1 + e≠3(t≠5)

4Õ
(31.1)

= ≠fi · (≠3)e≠3(t≠5)

(1 + e≠3(t≠5))2 (31.2)

= 3fie≠3(t≠5)

(1 + e≠3(t≠5))2 . (31.3)

Plugging in the value t = 5, we find

P Õ(5) = 3fie≠3(5≠5)

(1 + e≠3(5≠5))2 (31.4)

= 3fi

(1 + 1)2 (31.5)

= 3fi

4 (31.6)

In fact, the value of P Õ(t) at the inflection point is always given by the formula
kK/4. To see this, we can carefully compute P Õ(t) (which you are doing for homework
anyway):

By the quotient rule, we have

P Õ(t) = (K)Õ(1 + e≠k(t≠t0)) ≠ K(1 + e≠k(t≠t0))Õ

(1 + e≠k(t≠t0))2 . (31.7)

Using the chain rule, we see that

(1 + e≠k(t≠t0))Õ = e≠k(t≠t0) · (≠k(t ≠ t0))Õ (31.8)
= e≠k(t≠t0) · (≠k) (31.9)
= ≠ke≠k(t≠t0). (31.10)
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Plugging this in, we find

(K)Õ(1 + e≠k(t≠t0)) ≠ K(1 + e≠k(t≠t0))Õ

(1 + e≠k(t≠t0))2 = 0 · (1 + e≠k(t≠t0)) ≠ K(≠ke≠k(t≠t0))
(1 + e≠k(t≠t0))2

(31.11)

= kKe≠k(t≠t0)

(1 + e≠k(t≠t0))2 . (31.12)

Thus,

P Õ(t) = kKe≠k(t≠t0)

(1 + e≠k(t≠t0))2 .

This is again a complicated-looking function at first glance. (Complicated is in the
eye of the beholder—once you get used to this function, it won’t seem so compli-
cated.)

Definition 31.2.2. Any function

kKe≠k(t≠t0)

(1 + e≠k(t≠t0))2

is called a logistic distribution.
In other words, a logistic distribution function is the derivative of a logistic func-

tion.
Okay, let’s come back down to earth. Here is a graph of a logistic distribution.

t0

(t0, kK/4)

The function P Õ has a horizontal asymptote—at both t = Œ and t = ≠Œ, the graph
approaches the horizontal line given by y = 0. The graph also has a unique local
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maximum, given at t = t0, with height given by kK/4 (as you compute in your
homework due tonight).

In case you are curious, here is the graph of both P and of P Õ, side by side:

t0 t0

(t0, kK/4)

The spike on the right corresponds to the point of steepest slope on the lefthand
graph, and the height of the spike is precisely the slope of that steepest point on the
lefthand graph.
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31.3 Comparing logistic distribution to real data

Let’s get back to modeling the spread of viruses.
If our logistic function P (t) is telling us how many people total have been infected

by time t, then P Õ(t) is the rate of change of infections. For example, if t is in units
of days, the units of P Õ(t) is in people per day. Concretely, P Õ(t) tells us, at moment
t, the rate at which the number of infected people is increasing (in units of people
per day).

We rarely have a continuously changing P Õ(t) that we can measure. What we
often learn on the news is “Here are the total number of new cases that occurred the
previous day.” So, we can at least graph those numbers, and compare the graph to
a logistic distribution. If our model is accurate, then we should expect the graphs of
new infections per day to look similar.

Let’s look at real data—do some of these look like a logistic distribution?

Remark 31.3.1 (Peaks). The logistic distribution has a peak. This is not the time
at which we see no more new cases; this is the time at which the number of new
daily cases is maximal. You might imagine that this is the day when the most new
patients become hospitalized. When you hear a lot of people on the news talking
about the “peak” of the virus, they often mean the peak of the derivative, P Õ. So,
even after the “peak,” we will still see many new infections. The daily number of
new infections will steadily decrease, however.

Remark 31.3.2. Graphs were made on Google Sheets, using raw data from Johns
Hopkins University.
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Figure 31.1:
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Figure 31.2:
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Figure 31.3:
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Figure 31.4:
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Figure 31.5: Covid-19 cases in various countries, 2020
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31.4 Flattening the curve

You may heard the term “flatten the curve” in the media. We can model what this
means mathematically.

Suppose that there’s some carrying capacity K—an upper limit on how many
people a virus can infect. Suppose also that today, at t = 0, there are exactly I
people who have been infected. These are things out of our control. (We can’t go
back in time and change the number of people that are infected.) However, the
growth rate k is under our control, because we as a population can choose to lower
the rate of increase of the virus by (for example) practicing social distancing.

As it turns out, we can compute t0 in terms of k, K, and I:

t0 =
ln(K≠I

I )
k

.

Note that as k gets smaller (so the infection rate is slowed), t0 gets bigger. That is,
we can delay the peak. Moreover, we’ve already seen that the peak of P Õ(t) has value
kK/4, so as we decrease k, we can also decrease the number of new patients that
a hospital has to worry about. That’s good! The upshot: The intuitive idea that
social distancing reduces the rate of spread of a virus has (in this model) concrete
outcomes, like delaying the peak, and shrinking the peak.1

So, fixing K and I, let’s see what the graphs of the logistic distribution look like

1
Shrinking the peak is good, because it’s a lot easier for a hospital to worry about 500 new

patients on the busiest day, as opposed to 10,000 new patients on the busiest day. However, the

delay of the peak is arguably bad. Some people really want the stay-at-home orders to end sooner

rather than later, for example; but any relaxation comes at the cost of making the peak taller, and

over-burdening our hospitals. If our model is accurate, we see that it is mathematically impossible

to shrink the peak without prolonging the outbreak.
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for di�erent values of k:

k bigger

k smaller

I’ve drawn a dashed horizontal line. Suppose our hospital system can only handle 100
new patients a day, and suppose the dashed horizontal line represents that threshold.
(So, for example, for every day that our logistic distribution is above the line y = 100,
our hospitals are working over capacity.) If we can reduce k, we can “flatten the
curve” so that the peak occurs below the hospital capacity line of 100 new patients a
day. You should think of every logistic distribution above as a preview of a possible
future. Which curve do you think our future will be?

So the trade-o�: We shrink the peak, but we prolong the outbreak. As a public
health policy, most countries have chosen to try to shrink the peak at the risk of
prolonging the outbreak. I am not an expert, but you can imagine the horrible
consequences of a country’s hospital system collapsing. For example, people who
need care unrelated to Covid-19 would not receive care. And even after the outbreak
is over, the damage to our hospital system (for example, due to casualties in our very
small population of trained doctors and nurses) may take a long time to recover.
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31.5 Preparation for next time

31.5.1

Let P be a logistic function. Suppose you know that P (0) = I, and that you are
also given the values of K and k. Prove that

t0 =
ln

1
K≠I

I

2

k

31.5.2 (Plus One)

Suppose a line has slope m ”= 0, and goes through the point (x0, y0). Find the value
of x at which the line crosses the x-axis.


