Lecture 32

Derivatives of inverse trigonometric functions

Today we're going to learn some new derivatives! Let's begin with some review. This is an exercise we've already seen in class:

Exercise 32.0.1. Using the fact that $e^{\ln(x)} = x$, find the derivative of $\ln(x)$. (I know you know what the derivative of \ln is; I want you to be able to *prove* your answer.) Hint: You'll need to use the chain rule.

The reason that I want you to prove your answer: Now you can find new derivatives!

Exercise 32.0.2. Remember that $\sin^2 \theta + \cos^2 \theta = 1$. So, for example

 $\sqrt{1 - \cos^2 \theta} = \sin \theta$ and $\sqrt{1 - \sin^2 \theta} = \cos \theta$

whenever $\sin \theta \ge 0$ and $\cos \theta \ge 0$.

- (a) Using the fact that sin(arcsin(x)) = x, find the derivative of arcsin(x).
- (b) Using the fact that $\cos(\arccos(x)) = x$, find the derivative of $\arccos(x)$.
- (c) Using the fact that tan(arctan(x)) = x, find the derivative of arctan(x).

Here are solutions to the exercises.

32.1 Derivative of arcsin

Note that $\arcsin(x)$ is defined when $x \in [-1, 1]$, with an output/range of $[-\pi/2, \pi/2]$. An important thing to note is that $\cos \theta \ge 0$ whenever $\theta \in [-\pi/2, \pi/2]$. As a result:

$$\sin(\arcsin(x)) = x \tag{32.1}$$

$$\cos(\arcsin(x)) \cdot (\arcsin(x))' = 1 \tag{32.2}$$

$$(\arcsin(x))' = \frac{1}{\cos(\arcsin(x))}$$
(32.3)

$$=\frac{1}{\sqrt{1-\sin^2 \arcsin(x)}}\tag{32.4}$$

$$= \frac{1}{\sqrt{1 - (\sin \arcsin(x))^2}}$$
 (32.5)

$$=\frac{1}{\sqrt{1-x^2}}.$$
 (32.6)

Note that even though $\arcsin(x)$ is continuous along [-1,1], its derivative only exists along (-1,1). (That is, $\arcsin(x)$ is not differentiable at -1 and at 1.) Can you explain why using the graph of arcsin?

Also note that the derivative of arcsin has two vertical asymptotes, at x = 1 and x = -1. You can see this by taking the limit of $\frac{1}{\sqrt{1-x^2}}$ at x = 1 (approaching from the left) and the limit at x = -1 (approaching from the right):

$$\lim_{x \to 1^{-}} \frac{1}{\sqrt{1 - x^2}} = \infty \quad \text{and} \quad \lim_{x \to -1^{+}} \frac{1}{\sqrt{1 - x^2}} = \infty.$$

Figure 32.1: The graph of $\arcsin(x)$ on the left. The graph of its derivative on the right. Note the vertical asymptotes of the derivative.

32.2 Derivative of arccos

Now let's try arccos. This has a domain of [-1, 1] and a range of $[0, \pi]$. On this interval, sin takes on values between 0 and 1.

$$\cos(\arccos(x)) = x \tag{32.7}$$

$$-\sin(\arccos(x)) \cdot (\arccos(x))' = 1 \tag{32.8}$$

$$(\arccos(x))' = \frac{1}{-\sin(\arccos(x))}$$
(32.9)

$$=\frac{1}{-\sqrt{1-\cos^2\arccos(x)}}\tag{32.10}$$

$$= \frac{1}{-\sqrt{1 - (\cos \arccos(x))^2}}$$
(32.11)

$$=\frac{1}{-\sqrt{1-x^2}}$$
(32.12)

$$=\frac{-1}{\sqrt{1-x^2}}.$$
 (32.13)

Figure 32.2: The graph of $\arccos(x)$ on the left. The graph of its derivative on the right.

32.3 Derivative of arctan

Finally, let's compute the derivative of arctan. This has a domain of $(-\infty, \infty)$ and a range $(-\pi/2, \pi/2)$.

We will make use of the following:

$$\sec^2(\theta) = \frac{1}{\cos^2(\theta)} \tag{32.14}$$

$$=\frac{\sin^2(\theta) + \cos^2(\theta)}{\cos^2(\theta)}$$
(32.15)

$$=\frac{\sin^2(\theta)}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)}$$
(32.16)

$$= (\tan \theta)^2 + 1. \tag{32.17}$$

Here's the computation of the derivative:

$$\tan(\arctan(x)) = x \tag{32.18}$$

$$\sec^2(\arctan(x)) \cdot (\arctan(x))' = 1. \tag{32.19}$$

$$(\arctan(x))' = \frac{1}{\sec^2(\arctan(x))}$$
(32.20)

$$= \frac{1}{(\tan(\arctan(x)))^2 + 1}$$
(32.21)

$$=\frac{1}{x^2+1}.$$
 (32.22)

Figure 32.3: The graph of $\arctan(x)$ on the left. The graph of its derivative on the right.

32.4 Preparation for next time

32.4.1

(We did this in class, but make sure you could do this on a test!) Using the fact that sin(arcsin(x)) = x and using a trig identity, prove that

$$(\arcsin(x))' = \frac{1}{\sqrt{1-x^2}}.$$

32.4.2

(We did this in class, but make sure you could do this on a test!) Using the fact that tan(arctan(x)) = x and using a trig identity, prove that

$$(\arctan(x))' = \frac{1}{x^2 + 1}.$$

32.4.3

Compute the following indefinite integrals:

(a) $\int \frac{1}{9x^2 + 1} \, dx$

$$\int \frac{1}{\sqrt{1-4x^2}} \, dx$$

(c)

$$\int \frac{1}{\sqrt{3-4x^2}} \, dx$$

32.4.4 (Plus One)

Let f be a function, and x_0 a real number. Find the equation of a line that goes through the point $(x_0, f(x_0))$, and is tangent to f at this point.