
Lecture 32

Derivatives of inverse

trigonometric functions

Today we’re going to learn some new derivatives! Let’s begin with some review. This
is an exercise we’ve already seen in class:

Exercise 32.0.1. Using the fact that eln(x) = x, find the derivative of ln(x). (I know
you know what the derivative of ln is; I want you to be able to prove your answer.)
Hint: You’ll need to use the chain rule.

The reason that I want you to prove your answer: Now you can find new deriva-
tives!

Exercise 32.0.2. Remember that sin2 ◊ + cos2 ◊ = 1. So, for example

Ô
1 ≠ cos2 ◊ = sin ◊ and

Ò
1 ≠ sin2 ◊ = cos ◊

whenever sin ◊ Ø 0 and cos ◊ Ø 0.

(a) Using the fact that sin(arcsin(x)) = x, find the derivative of arcsin(x).

(b) Using the fact that cos(arccos(x)) = x, find the derivative of arccos(x).

(c) Using the fact that tan(arctan(x)) = x, find the derivative of arctan(x).

Here are solutions to the exercises.
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32.1 Derivative of arcsin
Note that arcsin(x) is defined when x œ [≠1, 1], with an output/range of [≠fi/2, fi/2].
An important thing to note is that cos ◊ Ø 0 whenever ◊ œ [≠fi/2, fi/2]. As a result:

sin(arcsin(x)) = x (32.1)
cos(arcsin(x)) · (arcsin(x))Õ = 1 (32.2)

(arcsin(x))Õ = 1
cos(arcsin(x)) (32.3)

= 1
Ò

1 ≠ sin2 arcsin(x)
(32.4)

= 1
Ò

1 ≠ (sin arcsin(x))2
(32.5)

= 1Ô
1 ≠ x2 . (32.6)

Note that even though arcsin(x) is continuous along [≠1, 1], its derivative

only exists along (≠1, 1). (That is, arcsin(x) is not di�erentiable at -1 and at
1.) Can you explain why using the graph of arcsin?

Also note that the derivative of arcsin has two vertical asymptotes, at x = 1 and
x = ≠1. You can see this by taking the limit of 1Ô

1≠x2 at x = 1 (approaching from
the left) and the limit at x = ≠1 (approaching from the right):

lim
xæ1≠

1Ô
1 ≠ x2 = Œ and lim

xæ≠1+

1Ô
1 ≠ x2 = Œ.
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Figure 32.1: The graph of arcsin(x) on the left. The graph of its derivative on the
right. Note the vertical asymptotes of the derivative.
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32.2 Derivative of arccos
Now let’s try arccos. This has a domain of [≠1, 1] and a range of [0, fi]. On this
interval, sin takes on values between 0 and 1.

cos(arccos(x)) = x (32.7)
≠ sin(arccos(x)) · (arccos(x))Õ = 1 (32.8)

(arccos(x))Õ = 1
≠ sin(arccos(x)) (32.9)

= 1
≠

Ò
1 ≠ cos2 arccos(x)

(32.10)

= 1
≠

Ò
1 ≠ (cos arccos(x))2

(32.11)

= 1
≠

Ô
1 ≠ x2 (32.12)

= ≠1Ô
1 ≠ x2 . (32.13)
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Figure 32.2: The graph of arccos(x) on the left. The graph of its derivative on the
right.
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32.3 Derivative of arctan
Finally, let’s compute the derivative of arctan. This has a domain of (≠Œ, Œ) and
a range (≠fi/2, fi/2).

We will make use of the following:

sec2(◊) = 1
cos2(◊) (32.14)

= sin2(◊) + cos2(◊)
cos2(◊) (32.15)

= sin2(◊)
cos2(◊) + cos2(◊)

cos2(◊) (32.16)

= (tan ◊)2 + 1. (32.17)

Here’s the computation of the derivative:

tan(arctan(x)) = x (32.18)
sec2(arctan(x)) · (arctan(x))Õ = 1. (32.19)

(arctan(x))Õ = 1
sec2(arctan(x)) (32.20)

= 1
(tan(arctan(x)))2 + 1 (32.21)

= 1
x2 + 1 . (32.22)
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Figure 32.3: The graph of arctan(x) on the left. The graph of its derivative on the
right.
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32.4 Preparation for next time

32.4.1

(We did this in class, but make sure you could do this on a test!) Using the fact that
sin(arcsin(x)) = x and using a trig identity, prove that

(arcsin(x))Õ = 1Ô
1 ≠ x2 .

32.4.2

(We did this in class, but make sure you could do this on a test!) Using the fact that
tan(arctan(x)) = x and using a trig identity, prove that

(arctan(x))Õ = 1
x2 + 1 .

32.4.3

Compute the following indefinite integrals:

(a) ⁄ 1
9x2 + 1 dx

(b) ⁄ 1Ô
1 ≠ 4x2 dx

(c) ⁄ 1Ô
3 ≠ 4x2 dx

32.4.4 (Plus One)

Let f be a function, and x0 a real number. Find the equation of a line that goes
through the point (x0, f(x0)), and is tangent to f at this point.


