Lecture 32

Derivatives of inverse trigonometric functions

Today we're going to learn some new derivatives! Let's begin with some review. This is an exercise we've already seen in class:

Exercise 32.0.1. Using the fact that $e^{\ln (x)}=x$, find the derivative of $\ln (x)$. (I know you know what the derivative of \ln is; I want you to be able to prove your answer.) Hint: You'll need to use the chain rule.

The reason that I want you to prove your answer: Now you can find new derivatives!

Exercise 32.0.2. Remember that $\sin ^{2} \theta+\cos ^{2} \theta=1$. So, for example

$$
\sqrt{1-\cos ^{2} \theta}=\sin \theta \quad \text { and } \quad \sqrt{1-\sin ^{2} \theta}=\cos \theta
$$

whenever $\sin \theta \geq 0$ and $\cos \theta \geq 0$.
(a) Using the fact that $\sin (\arcsin (x))=x$, find the derivative of $\arcsin (x)$.
(b) Using the fact that $\cos (\arccos (x))=x$, find the derivative of $\arccos (x)$.
(c) Using the fact that $\tan (\arctan (x))=x$, find the derivative of $\arctan (x)$.

Here are solutions to the exercises.

32.1 Derivative of arcsin

Note that $\arcsin (x)$ is defined when $x \in[-1,1]$, with an output/range of $[-\pi / 2, \pi / 2]$. An important thing to note is that $\cos \theta \geq 0$ whenever $\theta \in[-\pi / 2, \pi / 2]$. As a result:

$$
\begin{align*}
\sin (\arcsin (x)) & =x \tag{32.1}\\
\cos (\arcsin (x)) \cdot(\arcsin (x))^{\prime} & =1 \tag{32.2}\\
(\arcsin (x))^{\prime} & =\frac{1}{\cos (\arcsin (x))} \tag{32.3}\\
& =\frac{1}{\sqrt{1-\sin ^{2} \arcsin (x)}} \tag{32.4}\\
& =\frac{1}{\sqrt{1-(\sin \arcsin (x))^{2}}} \tag{32.5}\\
& =\frac{1}{\sqrt{1-x^{2}}} . \tag{32.6}
\end{align*}
$$

Note that even though $\arcsin (x)$ is continuous along $[-1,1]$, its derivative only exists along $(-1,1)$. (That is, $\arcsin (x)$ is not differentiable at -1 and at 1.) Can you explain why using the graph of arcsin?

Also note that the derivative of arcsin has two vertical asymptotes, at $x=1$ and $x=-1$. You can see this by taking the limit of $\frac{1}{\sqrt{1-x^{2}}}$ at $x=1$ (approaching from the left) and the limit at $x=-1$ (approaching from the right):

$$
\lim _{x \rightarrow 1^{-}} \frac{1}{\sqrt{1-x^{2}}}=\infty \quad \text { and } \quad \lim _{x \rightarrow-1^{+}} \frac{1}{\sqrt{1-x^{2}}}=\infty
$$

Figure 32.1: The graph of $\arcsin (x)$ on the left. The graph of its derivative on the right. Note the vertical asymptotes of the derivative.

32.2 Derivative of arccos

Now let's try arccos. This has a domain of $[-1,1]$ and a range of $[0, \pi]$. On this interval, sin takes on values between 0 and 1 .

$$
\begin{align*}
\cos (\arccos (x)) & =x \tag{32.7}\\
-\sin (\arccos (x)) \cdot(\arccos (x))^{\prime} & =1 \tag{32.8}\\
(\arccos (x))^{\prime} & =\frac{1}{-\sin (\arccos (x))} \tag{32.9}\\
& =\frac{1}{-\sqrt{1-\cos ^{2} \arccos (x)}} \tag{32.10}\\
& =\frac{1}{-\sqrt{1-(\cos \arccos (x))^{2}}} \tag{32.11}\\
& =\frac{1}{-\sqrt{1-x^{2}}} \tag{32.12}\\
& =\frac{-1}{\sqrt{1-x^{2}}} . \tag{32.13}
\end{align*}
$$

Figure 32.2: The graph of $\arccos (x)$ on the left. The graph of its derivative on the right.

32.3 Derivative of arctan

Finally, let's compute the derivative of arctan. This has a domain of $(-\infty, \infty)$ and a range $(-\pi / 2, \pi / 2)$.

We will make use of the following:

$$
\begin{align*}
\sec ^{2}(\theta) & =\frac{1}{\cos ^{2}(\theta)} \tag{32.14}\\
& =\frac{\sin ^{2}(\theta)+\cos ^{2}(\theta)}{\cos ^{2}(\theta)} \tag{32.15}\\
& =\frac{\sin ^{2}(\theta)}{\cos ^{2}(\theta)}+\frac{\cos ^{2}(\theta)}{\cos ^{2}(\theta)} \tag{32.16}\\
& =(\tan \theta)^{2}+1 \tag{32.17}
\end{align*}
$$

Here's the computation of the derivative:

$$
\begin{align*}
\tan (\arctan (x)) & =x \tag{32.18}\\
\sec ^{2}(\arctan (x)) \cdot(\arctan (x))^{\prime} & =1 \tag{32.19}\\
(\arctan (x))^{\prime} & =\frac{1}{\sec ^{2}(\arctan (x))} \tag{32.20}\\
& =\frac{1}{(\tan (\arctan (x)))^{2}+1} \tag{32.21}\\
& =\frac{1}{x^{2}+1} \tag{32.22}
\end{align*}
$$

Figure 32.3: The graph of $\arctan (x)$ on the left. The graph of its derivative on the right.

32.4 Preparation for next time

32.4.1

(We did this in class, but make sure you could do this on a test!) Using the fact that $\sin (\arcsin (x))=x$ and using a trig identity, prove that

$$
(\arcsin (x))^{\prime}=\frac{1}{\sqrt{1-x^{2}}}
$$

32.4.2
(We did this in class, but make sure you could do this on a test!) Using the fact that $\tan (\arctan (x))=x$ and using a trig identity, prove that

$$
(\arctan (x))^{\prime}=\frac{1}{x^{2}+1}
$$

32.4.3

Compute the following indefinite integrals:
(a)

$$
\int \frac{1}{9 x^{2}+1} d x
$$

(b)

$$
\int \frac{1}{\sqrt{1-4 x^{2}}} d x
$$

(c)

$$
\int \frac{1}{\sqrt{3-4 x^{2}}} d x
$$

32.4.4 (Plus One)

Let f be a function, and x_{0} a real number. Find the equation of a line that goes through the point $\left(x_{0}, f\left(x_{0}\right)\right)$, and is tangent to f at this point.

