Lecture 33

Newton’s Method

As you know, the three big ideas I want you to get out of calculus are:
e Limits,
e Derivatives, and
o Integrals.

However, there are some underlying themes in calculus, and the biggest theme you've
seen over and over again is the theme of approximation, or estimation.
For example,

1. To define a derivative: We recognized that the difference quotient was an ap-
proximation for the slope of a tangent line. So we took the limit as h — 0 to
define the derivative.

2. To define an integral: We recognized that Riemann sums approximated areas
under a curve; so we took the limit as n — oo to define the integral.

3. We saw a big application of derivatives, second derivatives, third derivatives,
and so forth, by taking Taylor polynomials. This allows us to approximate
values of complicated functions like sin using easy functions like polynomials.?

Today, we are going to learn another method of approximation, called Newton’s

Method.

!By the way, in good situations, if you take the limit of these Taylor polynomials of degree d
as d — oo, you would recover the original function! You may see this in your next semester of
calculus.
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While Taylor polynomials allowed us to approximate the value of f(x) given z,
Newton’s Method tries to reverse the process: Given a value of f that we want, can
we find an x so that f(z) equals that value?

Example 33.0.1. Let’s say you want to find the cube root of 9. There are two ways
you could try to compute this:

e There is a function called g(z) = ¢/z. The cube root of 9 is given by ¢(3). So
we could try to use Taylor polynomials to compute g(3).

e There is a function called h(z) = 23. We could ask, where does h(z) equal 97
Newton’s Method allows us to try and approximate the answer.

Of course, the end answers ought to be identical. But as you’ll see, the geometry
that comes out of these two different questions are quite different.
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33.1 The idea of Newton’s Method

Here is Newton'’s idea.

Preliminary step: Write f

(To reduce the question to one of finding roots.) First, we can always rephrase our
question about “where does a function A equal a particular value ¢” to a simpler
question: “where does a function f equal zero?” at the expense of changing our
function. Let me illustrate this by example:

Example 33.1.1. 1. If you want to know where h(z) = 2* achieves the value 2,
you can ask where the function f(z) = 23 — 2 achieves the value 0.

2. If you want to know where h(x) = sin(cos(z)) achieves the value 0.2, you can
ask where the function f(z) = sin(cos(z)) — 0.2 achieves the value 0.

3. If you want to know where h(x) = 2% 4+ 1 achieves the value 9, you can ask
where the function f(x) = 2% — 8 achieves the value 0.

Remark 33.1.2 (Roots). Remember that if f(x¢) = 0, then x is called a root of f.
What the preliminary step tells us is that if we can find roots of every function f,
then for any function h and any value ¢, we can find an xg so that h(zg) = c.

So, the preliminary step is to change our question:
When does h equal ¢? = When does f equal 07
The trick is to find the appropriate f given h and c¢. And this is, in fact, easy: We

always take f(z) = h(z) — c.
Here is what the graph of f might look like. We are interested in finding a root
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of f—that is, finding a place where f intersects the x-axis.

For example, if this were the graph of f(z) = 22 — 5, the root of f would be /5.
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Step 0. Choose a seed x.

So suppose we are given a function f, and we want to find a root. (That is, we want
to find a value of = for which f equals zero.) We first take a guess, and we call that
guess . This initial guess is called a seed.

Now, it may very well be that f(xo) does not equal zero. That’s okay. xy might
be thought of more as a point near the root, or an approximation to the root, rather
than an actual guess that’s meant to be correct. The closer z( is to the actual root,
the better Newton’s Method will work, but let’s ignore that for now.?

So, Step zero is:

Choose xg.

We emphasize that there is no “correct” choice here; it’s up to you. There are better
choices of xy than others (a better z is one that happens to be closer to the actual
root), but it may be hard to know what choices are good a priori.

Zo

2In fact, most calculus classes—including ours, unfortunately—will not describe why Newton’s
Method works, or why better guesses of xg result in better implementations of Newton’s Method.
For those of you who have felt like this class has already gone by quite quickly, you might sympathize
with the sad reality that there just isn’t enough time to cover (nor learn) everything.
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Step 1(a). Draw the tangent line at x.

The next step of Newton’s idea is to compute f(xg), then draw the line tangent to
f at the point (xq, f(x¢)). Here is a picture:

To To

($0> f(x(]

Zo

(w0, (2o

We have drawn in red the tangent line.
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33.1.0 Step 1(b). Find z;: where your tangent line meets
the x-axis.

Zo Zo X

(zo, f(2q (zo, f(2q

We have drawn in red the tangent line at (xg, f(z0)), and we have written as x; the
x-coordinate at which the red line intersects the x-axis.
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33.1.1 Step 2(a). Draw the tangent line at z;.

B (w1, f(21)) 11 (w1, f(21)) a

T T

Since we ascertained a number called z; in the previous step, we can now plot the
line (drawn in red) that is tangent to the graph of f at the x-coordinate x;.

33.1.2 Step 2(b). Find z,: Where the tangent line to
intersects zero.

| (x17f(x1)) 10 (:E17f(x1)) N

T T

)
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33.1.3 Step n(a): Draw the tangent line at x, ;.

33.1.4 Step n(b): Find z,, where the tangent line to z, ;
intersects zero.
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33.2 What Newton’s Method is supposed to do

As you can see, Newton’s Method doesn’t “end” after some number of steps. At the
nth step, you find a new number called x,, and you should think of x,, as the nth
approximation to the root you seek. It is rare that x, actually equals the root you
seek, but in good situations, x,, is very close to the root you seek so long as n is large
enough (that is, so long as you do enough steps).

For example, here is a drawing of xq, x1, z2, x3 for the example I drew out in the
previous pages:

Zo Ty
32

The take-away is that the numbers do get closer and closer to where the blue curve
(the function) actually intersects the z-axis. In fact, at the scale of our sheet of
paper, x3 probably looks like it’s exactly the root of f! My promise to you is, that
in this example, x4 is even closer to the root, x5 is even closer, and so forth. This
is how Newton’s Method behaves in the best scenarios—you can get more and more
accurate with each step, and in fact, you can get as accurate as you want.3

3Same caveat as before: We won’t discuss how we know these facts, and we also won’t discuss
how close we know we are after n steps. This is a bit frustrating, because being able to say with
confidence: “After n steps, we are within 100 decimal places” would be very convenient. It is
possible to do this, but we won’t discuss how in this class.
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33.3 Practice

Let’s use Newton’s Method to approximate the square root of 4. (Yes, yes, I know
that the square root of 4 is 2. Let’s just see whether Newton’s Method can get us
close to this answer!)

Exercise 33.3.1. Let’s begin with a (pretty bad) seed of xy = 1. (I say this is pretty
bad because we know that the square root of 4 is 2; but we are trying out a number
fairly far away from 2. A seed like 1.9 may have been far better.) Find z;.

Note that to get started, we need to

1. Identify f. In this case, it’s f(z) = 2? — 4, as this intersects the x-axis when
2% =4.

2. Find f(zo). In this case, f(zg) =23 —4 =12 —4=-3.
3. Find f'(x¢). In this case, f'(z) = 2z, so f'(xg) =2 1= 2.

4. Find the intersection of the tangent line with the x-axis. In this case, the
equation of the tangent line in point-slope form is

(y = f(z0)) = f'(z0)(x — 20).
So when y = 0, we find

G
5. Thus
21 = 20 — }tl(é(;)) (33.1)
- ]{211)) (33.2)
— - _23 (33.3)
_ g (33.4)

Exercise 33.3.2. Continue and find x,.

Exercise 33.3.3. Continue and find x3. How close are your z; to the actual root of
27
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33.4 Discussion of Newton’s Method

33.4.1 Newton’s Method is recursive

Newton’s Method is an example of a recursive algorithm. If you know what a for loop
in computer programming is, you have seen recursive algorithms before. Recursion
is a process by which we use a result from the previous step to compute something
in the next step. Often, recursive algorithms repeat the same procedure every step;
the only difference in each repetition is that the input may differ for each step.

For us, step n requires us to know z,_; (that is, we need to know the output of
the (n — 1)st step). But the geometric process for taking =, ; and outputting x,, is
identical to all other steps of the method—you draw a tangent line, and find where
it intersects the x-axis.

33.4.2 Newton’s Method may fail

Consider the following implementation of Newton’s Method:

i T Ty

(w1, f(21)) 1 F (21, f(z1))

In the last square, we had to zoom out to find where the red line intersected the x-
axis. Note that we don’t see how the blue curve (the graph of f) behaves at f(z2).
What if the blue curve exhibits the same kind of behavior as at x, forcing the tan-
gent line to look kind of flat, so that our x3 ends up even farther away from the root?
And what if this happens over and over again, so that each x, just gets us farther
away?

The reality is that this could happen! Indeed, for some functions, many choices
of o may force you into a terrible sequence of bad approximations. So, Newton’s
Method may fail. Keep this in mind.
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Regardless, it turns out that so long as one of your approrimations xz; is close
enough to the actual root, then eventually, your approximations will become as close
as you want to the actual root. This is the result of a theorem that I won’t mention
any further, but the proof of the theorem uses something called the contraction
principle, which you’ll learn about if you ever take an advanced differential equations
class or an advanced numerical analysis class. And, how close does one of your z;
need to be to the root? That depends on the values of the derivative of f at points
nearby the root. In practice, it may be that you have a lot of information on these
derivative values, or it may be that you have to fly blind.
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33.5 The fastest way to do Newton’s Method

You may have noticed during your exercises that it’s quite a hassle to write an equa-
tion for a tangent line and compute the x-intercept over and over again. Thankfully,
there’s an easy formula to get x,, based on z,_1.

Note that the equation of a tangent line is (using point-slope form):

y— flopa) = f/(l’nfl)@ — Tp_1).

So if y = 0, we have

_f(l'n71> = f/($n,1)($ - xnfl) (335)
S
f/(xn—l) ( n—l) (336)
R ACTE V.
Tn—1 f/(xn71> . (337)

So the point at which the tangent line intersects the x-axis (i.e., intersects the line
y = 0) is given by
f(l'nfl)

- fl(:’nnfl).

On the other hand, this x-value is, by definition, x,,! Hence we find the formula:

f(xn—l)
f/(xnfl).

Memorizing this formula removes the geometric legwork of writing down a line and
its equation and its x-intercept each iteration. However, you should also internalize
the geometric algorithm, because it is very easy to misremember this formula. The
geometry is forever.

Tn-1

Tp = Tp—1 —
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33.6 Preparation for next time

33.6.1

(a) Approximate the cube root of 7 using Newton’s Method, starting with a seed x,
and computing all the way up to 5. (You may use a calculator to find the x;. Note
that you should newver have to use the cube root function on your calculator for this
problem.)

(b) Compare your x5 to what a calculator tells you the cube root of 7 is. (For
the latter, you may use the cube root function.) How does your x5 compare?

33.6.2 (Plus One) Basic word problems

A rectangular pen (which has four walls) will have three of its walls made of brick,
and one of its walls made of glass. Brick walls cost 500 dollars per meter to make,
while glass walls cost 700 dollars per meter to make. If the rectangular pen has
length [ meters and width w meters, and if the glass wall has length [ meters, write
a function (in terms of [ and w) representing the total cost of a wall of length [ and
width w, in dollars.



