
Lecture 34

Newton’s Method, II

Last class, I introduced you to Newton’s Method. This method takes a function f ,
and helps you find where f equals zero (i.e., where f has a root). I discussed how,
more generally, this method allows you to take a function h and find out where h
equals some value c.

Let’s recall that Newton’s Method works as follows:

• Step Zero is to choose a seed, x0. This is just a choice of real number. I told
you that the closer x0 is to an actual root, the better Newton’s Method will
work.

• Step n has two parts. First, you find the tangent line to f at xn≠1. Then,
you intersect the tangent line with the x-axis to obtain a new number, xn,
given by the x-coordinate where the intersection occurs. This xn is your nth
approximation to the root.

We left o� by seeing a formula for how to get the nth approximation from the (n≠1)st
approximation:

xn = xn≠1 ≠ f(xn)
f Õ(xn) .

1
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34.1 Discussion of Newton’s Method

This section is an elaboration on the class notes from last class.

34.1.1 Newton’s Method is recursive

Newton’s Method is an example of a recursive algorithm. If you know what a for loop
in computer programming is, you have seen recursive algorithms before. Recursion
is a process by which we use a result from the previous step to compute something
in the next step. Often, recursive algorithms repeat the same procedure every step;
the only di�erence in each repetition is that the input may di�er for each step.

For us, step n requires us to know xn≠1 (that is, we need to know the output of
the (n ≠ 1)st step). But the geometric process for taking xn≠1 and outputting xn is
identical to all other steps of the method—you draw a tangent line, and find where
it intersects the x-axis.

34.1.2 Newton’s Method may fail

If you choose a bad seed x0 Consider the following implementation of Newton’s
Method:

x0 x0

(x0, f(x0))

x0

(x0, f(x0))

x0

(x0, f(x0))

x1

x1 x1

(x1, f(x1))

x1

(x1, f(x1))

x1

(x1, f(x1))
x2

In the last square, we had to zoom out to find where the red line intersected the x-
axis. Note that we don’t see how the blue curve (the graph of f) behaves at f(x2).
What if the blue curve exhibits the same kind of behavior as at x1, forcing the tan-
gent line to look kind of flat, so that our x3 ends up even farther away from the root?
And what if this happens over and over again, so that each xn just gets us farther
away?
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The reality is that this could happen! Indeed, for some functions, many choices
of x0 may force you into a terrible sequence of bad approximations. So, Newton’s
Method may fail. Keep this in mind.

Here are two other ways Newton’s Method could fail.

If some xn is a critical point It could happen that you choose x0 so that some
xn is a critical point—that is, f Õ(xn) = 0. Then the tangent line to f at xn is flat,
so it’s parallel to the x-axis, meaning the tangent line will never intersect the x-axis!
Thus we cannot go from the nth step to (n + 1)st step. Newton’s Method can’t be
implemented here, mainly because of an unlucky choice of seed. So, for example, you
should try to never choose a critical point for your seed.

If f isn’t di�erentiable Note that Newton’s Method requires us to take a deriva-
tive at every step. So we want f to be a function that has all derivatives. Importantly,
it turns out that we’ll need f to be a function that is also di�erentiable at its root.
As an example, if f = 5

Ô
x is the fifth root function, you’ll have a hard time approx-

imating the root because each time you get close to the root, Newton’s Method will
draw a very, very steep tangent line that will shoot you far away from the root.

If f has many roots Strictly speaking, this isn’t a failure of Newton’s Method.
But Newton’s Method does not tell you how many roots a function f has. (That is,
it doesn’t tell you how many times f itself intersects the x-axis.) For example, a lot
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of parabolas intersect the x-axis twice. (Take for example f(x) = x2 ≠ 2x + ≠9).1

Then, as a general rule, if your x0 is close enough to the root on the right, Newton’s
Method will give you an approximate to the root on the right. If your x0 is close
enough to the root on the left, then Newton’s Method will approximate the root
on the left. Note that I wrote close enough, not closer. Indeed, for functions other
than quadratic functions, being closer to one of the roots doesn’t imply that you’ll
approximate that root.

So, just keep in mind that Newton’s Method may approximate a root of a func-
tion, but you don’t always know which root, nor how many roots a function f may
have.

1By the way, by completing the square, we see that f(x) = (x ≠ 1)2 + 8, so the roots of f are
given by 1 ±

Ô
8. So if you know how to approximate the square root of 8, you’d know how to

approximate the roots to f . Not every f allows you to make such simple reductions.
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34.2 When, and why, does Newton’s Method suc-

ceed?

Regardless, it turns out that so long as one of your approximations xn is close enough
to the actual root, then eventually, your approximations will become as close as you
want to the actual root.

This is the result of a theorem that I won’t mention any further, but the proof of
the theorem uses something called the contraction principle, which you’ll learn about
if you ever take an advanced di�erential equations class or an advanced numerical
analysis class. And, how close does one of your xn need to be to the root? That
depends on the values of the derivative of f at points nearby the root. In practice,
it may be that you have a lot of information on these derivative values, or it may be
that you have to fly blind.

Here is an argument as to why Newton’s Method works.
First, let’s look at the formula

x1 = x0 ≠ f(x0)
f Õ(x0)

.

This is a beautiful formula, because it tells you what x1 is for any x0. In other words,
this formula defines a function! Let’s call the function g, so

g(x) = x ≠ f(x)
f Õ(x) . (34.1)

The function takes as input a possible seed, and outputs what x1 of that seed is.
Note that if x0 is a seed for Newton’s Method, then not only does g(x0) = x1, we
also see that g(g(x0)) = x2, and g(g(g(x0))) = x3, and so forth.

For simplicity, let’s assume that f has a root at x = 0. Then here is the big
theorem:

Theorem 34.2.1. If |gÕ(x)| < 1 for all points x near the root, then g(x) will always
be closer to the root than x.

Let’s see why this theorem should be true. If |gÕ(x)| < 1 for all x on some interval
[a, b], then you know that the integral of gÕ(x) will have absolute value less than the
integral of 1. But then for positive x,

|g(x)| Æ
⁄ x

root
|gÕ(x)| dx Æ

⁄ x

root
1 dx = x,
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so we find that |g(x)| Æ |x|. (The same result holds for negative x.) Because
we assumed the root is at the origin, |x| is the distance of x from the root, and
this inequality tells us that |g(x)| < |x|, meaning g(x) is closer to the root than x
originally was.

So the proof of the theorem relies crucially on the assumption that |gÕ(x)| < 1
near the root. Can we guarantee that this inequality holds? Well, let’s try! The
derivative of g is easy to calculate because we have an explicit formula for g(x) (34.1).
The derivative is

gÕ(x) = 1 = f Õ(x)f Õ(x) ≠ f ÕÕ(x)f(x)
(f Õ(x))2 (34.2)

= 1 ≠ 1 + f ÕÕ(x)f(x)
(f Õ(x))2 (34.3)

= f ÕÕ(x)f(x)
(f Õ(x))2 . (34.4)

Now suppose that f Õ(root) ”= 0—then f Õ(x) ”= 0 near the root.2 Let m be the smallest
value that |f Õ(x)| takes on over some small interval near the root. Likewise, because
f ÕÕ(x) is continuous, we can find some largest value M that |f ÕÕ(x)| takes on over this
interval. Then |gÕ(x)| Æ M

m f(x). The limit of M
m f(x) as x approaches the root is 0,

by definition of root! So, so long as x is close enough to the root, we can guarantee
that |gÕ(x)| is less than 1. (In fact, it’ll be as small as we want if we make sure x is
near enough to the root.)

Remark 34.2.2 (The need for higher derivatives of f). If you’re following along,
you’ll wonder what goes wrong when f Õ(x) = 0 at the root. Well, to compute

2We are assuming here that f Õ is continuous, so that nearby points have nearby values. It turns
out f Õ is automatically continuous if f ÕÕ exists; we’ll see this later.
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limxæ0 gÕ(x), just apply L’Hopital’s Rule to (34.4). Then we have

lim
xæ0

gÕ(x) = lim
xæ0

f ÕÕ(x)f(x)
(f Õ(x))2 (34.5)

= lim
xæ0

f ÕÕÕ(x)f(x) + f ÕÕ(x)f Õ(x)
2f Õ(x)f ÕÕ(x) (L’Hopital) (34.6)

= lim
xæ0

f ÕÕÕ(x)f(x)
2f Õ(x)f ÕÕ(x) + f ÕÕ(x)f Õ(x)

2f Õ(x)f ÕÕ(x) (34.7)

= lim
xæ0

f ÕÕÕ(x)f(x)
2f Õ(x)f ÕÕ(x) + 1

2 (34.8)

= lim
xæ0

f (4)(x)f(x) + f ÕÕÕ(x)f Õ(x)
2f ÕÕ(x)f ÕÕ(x) + 2f Õ(x)f ÕÕÕ(x) + 1

2 (L’Hopital) (34.9)

Now if we assume that f ÕÕ(root) ”= 0, the limit of this fraction can be computed,
using the fact that limxæ0 f(x) = 0 andlimxæ0 f Õ(x) = 0. For then, by the quotient
law for limits,

lim
xæ0

f (4)(x)f(x) + f ÕÕÕ(x)f Õ(x)
2f ÕÕ(x)f ÕÕ(x) + 2f Õ(x)f ÕÕÕ(x) + 1

2 = 0 + 0
2f ÕÕ(x)f ÕÕ(x) + 0 = 0.

And indeed, if limxæroot gÕ(x) = 1/2, then |gÕ(x)| < 1 for x close enough to the root.
You’ll note that to carry this through, even if f Õ(root) = 0, we needed to assume that
f ÕÕ(root) ”= 0. And, we had to take more derivatives (the fourth derivative showed
up!). So to apply Newton’s Method, we need to assume that some higher derivative
of f doesn’t equal zero at the root, and that f has enough higher derivatives beyond
that.
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34.3 Preparation for next time

34.3.1

Let f(x) = x2 ≠ 3x ≠ 1.

(a) Using the quadratic formula, find an exact expression for the roots of f .

(b) Let x0 = 4. Using Newton’s Method three times (i.e., find x3), approximate one
of the roots of f . You may use a calculator; write down your x3 to 6 decimal
places. How does x3 compare to the first few digits of your answers from (a)?

(c) Now suppose that instead, you took the seed x0 = ≠2. Using the graph of f ,
explain why Newton’s Method would produce an approximation to a di�erent
root than (b) approximated.

34.3.2 (Plus One) Intersecting curves

Consider the two curves y = 2x ≠ x2 and y = ≠5.
Find the two points where these two curves intersect.


