
Lecture 36

How good are Taylor polynomial
approximations?

For today, I had you reason out why (for a continuous function f) we have
⁄ b

a
|f(x)| dx Ø |

⁄ b

a
f(x) dx|.

In case it helps, here are example pictures of what the functions f(x) and |f(x)|
might look like:

f(x)

|f(x)|

How do their integrals compare?
We’ve already seen this inequality when verifying that Newton’s Method works

so long as the seed is close enough to a root. Today we’ll use it again to see that we
can actually guarantee that Taylor polynomials are good approximations!
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36.1 Recollections on Taylor polynomials
Let’s let f be a function that has derivatives, and second derivatives, and third
derivatives, and so forth.1 Choose also a real number a. Then we found a way to
write down polynomials whose graphs looked a lot like the graphs of f , at least when
we’re close to a.

First, let’s recall the calculus and the algebra. Writing down a Taylor polynomial
involved the following steps:

1. Decide what degree Taylor polynomial you want. This was often in the prompt.
Let’s say this degree is 4.

2. Compute the derivatives of f all the way to the 4th derivative. This means
you have to compute the functions f(x), f Õ(x), f ÕÕ(x), f ÕÕÕ(x), and f (4)(x).

3. Compute the values of these derivatives at a. So you have to compute the
numbers f(a), f Õ(a), f ÕÕ(a), f ÕÕÕ(a), f (4)(a).

4. Use reasoning (or a formula) to conclude that the polynomial

f(a) + f Õ(a)(x ≠ a) + 1
2f ÕÕ(a)(x ≠ a)2 + . . . + 1

4!f
(4)(a)(x ≠ a)4

is a polynomial whose value, and whose derivatives up to the fourth derivative,
all agree with those of f at x = a. This polynomial is called the fourth degree
Taylor polynomial of f .
(Note: We of course saw how to compute the Taylor polynomial for other
degrees, where the (x ≠ a)n term has coe�cient given by 1

n!f
(n)(a).)

1
Remember that some functions don’t have derivatives. For example, f(x) = |x| isn’t di�eren-

tiable at x = 0.
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Example 36.1.1. Let f(x) = cos(x) and set a = 0.

T0 T2

T4 T6
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36.2 Estimating the error
So the graphs look similar near a, so we have graphical evidence that Taylor polynomi-
als approximate functions well, and that for each degree we go up, the approximations
look better.

But if we want to actually know that T (0.1), for example, is very close to cos(0.1),
how would we do that?

Goal. Given a function f , a point a, a degree d, and a “test point x,” we want to
answer the following question: how close is the number Td(x) (given by the Taylor
polynomial) to the number f(x) (the actual value of the function)?

The form of our answer. We are going to find our answer in the following
form:

|f(x) ≠ Td(x)| Æ some number we know.

That is, we are going to take the number Td(x) that the Taylor polynomial tells us,
and we are going to be able to compare it2 to f(x), and we are going to be able to
conclude that the di�erence between these two numbers has absolute value less than
some other number we know.

Example 36.2.1. Even in the degree 0 case, we’ll get an intuitive answer. Suppose
that the slope of f is always between ≠M and M . Then for any x, we’ll see that

|f(x) ≠ T0(x)| Æ M(x ≠ a).

To interpret this, take a look at the following picture:

a

(x ≠ a, M(x ≠ a))

(x ≠ a, M(a ≠ x))

x

f(x)

In blue I’ve drawn the graph of a function f , and in red I’ve drawn two lines of slopes
M and ≠M , in red. Because f always has slope between M and ≠M (meaning I

2
Even if we don’t know the exact value of f(x)! How cool is that?
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know how f changes), I can conclude that the graph of f has to lie between the two
lines I’ve drawn.

Moreover, in the second picture, the value of T0(x) is just the height of the
horizontal black line, so the quantity |f(x) ≠ T0(x)| is just measuring how far away
the graph of f is from this horizontal black line. As you can see, this distance is
sandwiched by the distance between the horizontal black line and the red slanted
lines. On the other hand, the distance between the horizontal black line and the red
slanted lines at x is easy to calculate—it’s M |x ≠ a|.

More generally, we have the following theorem:

Theorem 36.2.2 (Error bounds for Taylor polynomials). Suppose you know that
in the interval between x and a, the (n + 1)st derivative of f always satisfies

|f (n+1)| Æ Mn+1.

(That is, the graph of f (n+1) is always sandwiched between the horizontal lines having
height ±Mn+1.) Then

|f(x) ≠ Tn(x)| Æ Mn+1|(x ≠ a)n+1|. (36.1)

I want to emphasize that when you solve problems in real life, you know Tn(x),
and (x ≠ a) exactly, and you can often find Mn+1. Thus, even if this inequality does
not tell you what f(x) is, it tells you that you are “at least this close” to f(x) when
you compute Tn(x). Here, the word “this” refers to the quantity on the righthand
side of the inequality (36.1).

Let’s see this theorem in action.

Example 36.2.3. Let’s see how good a degree one Taylor polynomial at a = 0
approximates sin(0.1). That is, f = sin(x) in this example.

The formula tells us

| sin(0.1) ≠ T1(0.1)| Æ M1
1! |(0.1 ≠ 0)1|. (36.2)

The name of the game now is to try to find M1. Remember, M1 is some number that
guarantees that—between x and a—the derivative of f always has absolute value
smaller than M1. Well, the derivative of sin is cos, and the value of cos is always
between -1 and 1. So we know that |f Õ(x)| will always have a value with absolute
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value less than or equal to 1. This means we can take M1 to equal 1. Thus we find

| sin(0.1) ≠ T1(0.1)| Æ M1
1! |(0.1 ≠ 0)1| (36.3)

= 1
1! |(0.1 ≠ 0)1| (36.4)

= |(0.1 ≠ 0)| (36.5)
= 0.1 (36.6)

Let’s interpret this final inequality:
| sin(0.1) ≠ T1(0.1)| Æ 0.1. (36.7)

What this inequality says is that—even if I don’t know what sin(0.1) is—if I plug in
T1(0.1), then the resulting number will be within 0.1 of sin(0.1).

Shall we give it a shot? We know that
• sin(0) = 0, and

• sin(x)Õ = cos(x), so f Õ(a) = cos(a) = cos(0) = 1.
So the degree 1 Taylor polynomial centered at a = 0 is given by

T1(x) = f(a) + f Õ(a)(x ≠ a) = 0 + (x ≠ 0) = x.

So we see that T1(0.1) = 0.1. And the inequality (36.7) tells us that sin(0.1) must be
within 0.1 of 0.1. So sin(0.1) is between 0 and 0.2. Is that useful to you? Perhaps.
At least you know sin(0.1) cannot be, for example, 0.20001.
Example 36.2.4. Let’s do better. What we if try to approximate sin(0.1) using a
degree three Taylor polynomial?

Then the error bound formula tells us

|sin(0.1) ≠ T3(0.1)| Æ M4
4! (0.1 ≠ 0)4.

The fourth derivative of sin is sin again, so we can choose M4 = 1. Then the
righthand side of the inequality becomes

M4
4! (0.1 ≠ 0)4 = 1

4!(0.1 ≠ 0)4 (36.8)

= 1
4!(0.1)4 (36.9)

= 1
4!(10)≠4 (36.10)

= 1
4! ◊ 104 . (36.11)



36.2. ESTIMATING THE ERROR 7

At this point, things are looking good! 104 is a large number, and we are dividing 1
by this large number. In fact, a calculator shows

1
4! ◊ 104 < 0.00000416668 (36.12)

so whatever you compute T3(0.1) to be, it will be within 0.00000416668 of sin(0.1).
That means you can compute sin(0.1) to at least four decimal places just by plugging
in 0.1 to your polynomial T3(x).

Do you want to give it a shot?

T3(0.1) = 0 + 1(0.1 ≠ 0) + 0 ≠ 1
6(0.1)3 ¥ 0.09983333333.

On the other hand, a calculator tells us

sin(0.1) ¥ 0.09983341665.

Our T3 is looking pretty good! We even nail down the first six decimal places, though
we were a priori guaranteed only that the first four would be correct based on (36.12).

I want to emphasize that before Taylor polynomials, you didn’t have any tools
to compute sin(0.1) by hand. All you had was a calculator, whose operations were
mysterious. Now, you can compute sin(0.1)—or any other value of sin—by using
Taylor polynomials. And, if you choose a high enough degree polynomial, you can
certifiably3 compute sin to more decimal places than your calculator!

3
That is, provably.
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36.3 Why is the error bound formula true?
So why does the inequality

|f(x) ≠ Tn(x)| Æ Mn+1
(n + 1)!(x ≠ a)(n+1)

in Theorem 36.2.2 hold true?
Let’s see it first when n = 0. In this case, we begin with the known assumption

(this is how we chose M1):

|f Õ(x)| Æ M1 when x is close enough to a. (36.13)

So let’s integrate both sides, assuming that x > a:
⁄ x

a
|f Õ(x)| dx Æ

⁄ x

a
M1 dx. (36.14)

Note that this inequality follows from (36.13) because if a function on the left always
has lesser value than the function on the right, then the Riemann sum on the left
will always be less than the corresponding Riemann sum on the right. So in the limit
as we take more and more rectangles, the integrals will obey the same inequality.

Now we use the inequality that you studied for today:

|
⁄ x

a
f Õ(x) dx| Æ

⁄ x

a
|f Õ(x)| dx. (36.15)

Putting together (36.14) and (36.15), we find

|
⁄ x

a
f Õ(x) dx| Æ M1(x ≠ a). (36.16)

Again when x > a, the righthand side is equal to |x ≠ a|.
What if x < a? Then we would conclude from (36.13) that

⁄ a

x
|f Õ(x)| dx Æ

⁄ a

x
M1 dx. (36.17)

This is by the same reasoning as we saw in (36.14); but here, we are being careful
that, in the bounds of integration, the number at the bottom of the integral symbol
is indeed smaller than the number at the top of the integral symbol. From (36.17)
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and (36.15), we conclude that

|f(x) ≠ f(a)| = |
⁄ x

a
f Õ(x) dx| (36.18)

= | ≠
⁄ a

x
f Õ(x) dx| (36.19)

= |
⁄ a

x
f Õ(x) dx| (36.20)

Æ
⁄ a

x
M1 dx (36.21)

= M1(a ≠ x) (36.22)
= M1|x ≠ a| (36.23)

where in the very last equality, we have used that x < a.
Thus, looking at both (36.16) (36.23), and noting that T0(x) = f(a) (this is

special to degree 0), we can say in general that

|f(x) ≠ T0(x)| Æ M1|x ≠ a|. (36.24)

This indeed agrees with Theorem 36.2.2.
The summary of this degree zero proof is: Just integrate the inequality

|f Õ| Æ M1.
How do we do the proof for other degrees? We will follow the same strategy:

Just integrate the inequality |f (n+1)| Æ Mn+1 over and over.
Let’s see this in action for n = 1. We begin by assuming there is some real

number M1+1 = M2 so that
|f (2)| Æ M2.

Let’s integrate both sides from a to x to find
⁄ x

a
|f (2)| dx Æ

⁄ x

a
M2 dx.

Applying (36.15) to the left, and integrating the righthand side, we find

|
⁄ x

a
f (2) dx| Æ M2(x ≠ a). (36.25)

But the lefthand integral is, by the fundamental theorem of calculus,
⁄ x

a
f (2) dx = f Õ(x) ≠ f Õ(a).
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So we find from (36.25) that

|f Õ(x) ≠ f Õ(a)| Æ M2(x ≠ a). (36.26)

Here is where we “integrate over and over.” Let’s again integrate this inequality!
Then ⁄ x

a
|f Õ(x) ≠ f Õ(a)| dx Æ

⁄ x

a
M2(x ≠ a)dx.

Applying (36.15) to the left, and integrating the righthand side (sounding familiar?4),
we find

|
⁄ x

a
f Õ(x) ≠ f Õ(a) dx| Æ M2

2 (x ≠ a)2. (36.27)

Now let’s integrate the lefthand side (inside the absolute value):
⁄ x

a
f Õ(x) ≠ f Õ(a) dx = f(x) ≠ f(a) ≠

3⁄ x

a
f Õ(a) dx

4
(36.28)

= f(x) ≠ f(a) ≠ (f Õ(a)x ≠ f Õ(a)a) (36.29)
= f(x) ≠ f(a) ≠ (f Õ(a)(x ≠ a)) (36.30)
= f(x) ≠ f(a) ≠ f Õ(a)(x ≠ a) (36.31)
= f(x) ≠ (f(a) + f Õ(a)(x ≠ a)) (36.32)
= f(x) ≠ T1(x). (36.33)

Combining (36.27) with (36.33), we conclude

|f(x) ≠ T1(x)| Æ M2
2 (x ≠ a)2.

This is indeed the inequality in Theorem 36.2.2 for degree 1!
The pattern for proving the inequality in Theorem 36.2.2 for higher degrees is

identical. You integrate over and over again, beginning with the knowledge that the
(n + 1)st derivative of f is bounded by some number Mn+1.

4
See right before (36.25).
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36.4 Preparation for next time
Let f(x) = ex.

(a) Write out the degree 4 Taylor polynomial T4(x) for f , centered at a = 0.

(b) Compute T5(1). What famous number is T5(1) supposed to approximate?

(c) Somebody tells you that the sixth derivative of f is always between -3 and 3 so
long as you evaluate the sixth derivative on the interval from 0 to 1. Based on
this, how close can you guarantee T5(1) is to f(1)? (This is also a hint to the
“famous number” question above.)

(d) Using a calculator (or by hand), write out the first 4 digits of T5(1).

(e) How does this compare to the “famous number”?

36.4.1 Plus One
There is no plus one problem for this last week, as there is realistically no time for
people to come to o�ce hours after these are graded.


