
Lecture 37

Di�erentiable functions are

continuous

Today, we are going to “review” some notions of continuity and di�erentiability. At

the same time, we will learn the following fact:

Theorem 37.0.1. Let f be a function, and a a number. If f is di�erentiable at a,

then f is continuous at a.

(This is a logical statement that is very straightforward in form. For example,

the statement “Let R be a polygon. If R is a square, then it is a rectangle” has a

logically identical form.)

To appreciate the theorem, let’s review what the key words in the theorem mean.

First, let’s recall:

Definition 37.0.2. The derivative of f at a is the limit

lim
hæ0

f(a + h) ≠ f(a)

h
.

If this limit exists, we say that the derivative exists, and we also say that f is

di�erentiable at a.

If the limit does not exist, we say that the derivative does not exist at a, and we

also say that f is not di�erentiable at a.

When the derivative at a does exist, we write it as

f Õ
(a).

Finally, we write

f Õ, or f Õ
(x)

1
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for the new function we obtain by declaring that f Õ
sends any number x to the

derivative of f at x (if it exists). f Õ
is not defined at x if f Õ

is not di�erentiable at x.
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37.1 Example of using definition of derivative

Example 37.1.1. You “know” that the derivative of f(x) = x2
+ 3 at a = 5 is given

as follows:

f Õ
(x) = 2x so f Õ

(a) = f Õ
(5) = 2(5) = 10.

You used the power rule to compute this. However, note that in the work just shown,

you did not use the definition of the derivative!

So let’s compute it using the definition of derivative. The derivative of f at a = 5

is given by:

f Õ
(a) = lim

hæ0

f(5 + h) ≠ f(5)

h
(37.1)

= lim
hæ0

(5 + h)
2

+ 3 ≠ (5
2

+ 3)

h
(37.2)

= lim
hæ0

5
2

+ 10h + h2
+ 3 ≠ 5

2 ≠ 3

h
(37.3)

= lim
hæ0

10h + h2

h
(37.4)

= lim
hæ0

(10 + h) (37.5)

= 10 + lim
hæ0

h (37.6)

= 10 + 0 (37.7)

= 10. (37.8)

What things like the power rule, Leibniz rule, chain rule, et cetera do is give you

a shortcut. Just like you have memorized that 9 ◊ 9 = 81 (and you do not add

9 to itself nine times), the derivative rules allow you to skip the limit definition of

derivative and go straight to computing an answer.
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37.2 Another example of using definition of deriva-

tive

Example 37.2.1. Likewise, you proved that the derivative of sin at 0 is given by 1

using the limit definition:

sin
Õ
(0) = lim

hæ0

sin(0 + h) ≠ sin(0)

h
(37.9)

= lim
hæ0

sin(0) cos(0) + sin(h) cos(0) ≠ sin(0)

h
(37.10)

= lim
hæ0

0 · cos(h) + sin(h) · 1 ≠ 0

h
(37.11)

= lim
hæ0

sin(h)

h
(37.12)

and we showed that this limit is 1 in class, using the squeeze theorem. If you want

to construct the formula for sin(x) in general, we can compute:

sin
Õ
(x) = lim

hæ0

sin(x + h) ≠ sin(x)

h
(37.13)

= lim
hæ0

sin(x) cos(h) + sin(h) cos(x) ≠ sin(x)

h
(37.14)

= lim
hæ0

sin(x)(cos(h) ≠ 1) + sin(h) cos(x)

h
(37.15)

= lim
hæ0

sin(x)
cos(h) ≠ 1

h
+ lim

hæ0

sin(h) cos(x)

h
(37.16)

= sin(x) lim
hæ0

cos(h) ≠ 1

h
+ cos(x) lim

hæ0

sin(h)

h
(37.17)

= sin(x) lim
hæ0

cos(h) ≠ 1

h
+ cos(x). (37.18)

Now I claim that limhæ0
cos(h)≠1

h = 0. To see this, let’s make the substitution ◊ = h/2.

Then cos(h) = cos(2◊) = cos
2 ◊ ≠ sin

2 ◊ = 1 ≠ 2 sin
2
(◊). That is,

cos(h) = 1 ≠ 2 sin
2
(h/2).
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So we find

lim
hæ0

cos(h) ≠ 1

h
= lim

hæ0

1 ≠ 2 sin
2
(h/2) ≠ 1)

h
(37.19)

= lim
hæ0

2 sin
2
(h/2)

h
(37.20)

= lim
hæ0

2 sin
2
(h/2)

2(h/2)
(37.21)

= lim
hæ0

sin
2
(h/2)

(h/2)
(37.22)

= lim
hæ0

sin(h/2)

(h/2)
sin(h/2) (37.23)

= lim
hæ0

sin(h/2)

(h/2)
lim
hæ0

sin(h/2) (37.24)

= 1 · 0 (37.25)

= 0. (37.26)

Remark 37.2.2. As you can see, being able to compute the derivative of sin really

relies on being able to compute some di�cult limits! When you memorize the formula
d

dx sin(x) = cos(x), you have stood on the shoulders of giants (i.e., skipped the labor

of computing these limits) so that you can see farther.
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37.3 Continuity

Let’s get back to our main theorem, Theorem 37.0.1. It says that if f is di�erentiable

at a, then f is continuous at a. We have just reviewed that being “di�erentiable at

a” means that a certain limit (the limit of the di�erence quotient) exists.

So let’s review what it means for f to be continuous.

Definition 37.3.1. We say that f is continuous at a if

1. f is defined at a

2. limxæa f(x) exists, and

3. f(a) = limxæa f(x).

The most important part of the definition of continuity is the last equation. Note

that if you even want to write an equality like f(a) = limxæa f(x), then you need to

know that you have numbers on both sides of the equality! That’s why you demand

that f is defined at a (so that f(a) makes sense) and that the limit exists (so that

limxæa f(x) is a number).

Remark 37.3.2. Just as with the definition of “derivative,” the definition of “conti-

nuity” involves the notion of limits. So you need to know how to determine whether

a limit exists, and how to compute it, to test for continuity.

In this class, you have learned some shortcuts about testing for continuity—

just like you learned derivative rules. For example, if you are given the graph of a

function f , you know that f is continuous so long as there are no “jumps” in f . We

described this as “if you can draw the graph of f without lifting your pencil, then f
is continuous.”
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We also saw how to think about graphs of f as follows:

≠4 ≠2 0 2 4
≠6

≠4

≠2

0

2

4

6

This picture means that f takes on the value f(0) = 2, and f(2) = 4, for example.

(The white dots mean that f does not take on the white-dot value, while the black

dots signify the values that f does take.)
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37.4 Di�erentiability implies continuity

So, let’s see why f being di�erentiable at a ensures that f is continuous at a. This

means we need to check the three conditions in the definition of continuity:

1. If f is di�erentiable at a, is f defined at a?

The answer here is yes. In fact, that f is defined at a is a requirement for being

able to define di�erentiability. After all, when computing the limit

lim
hæ0

f(a + h) ≠ f(a)

h

we have to know that a number called f(a) is given (in order to compute the numer-

ator).

2. If f is di�erentiable at a, does limxæa f(x) exist? This is the hard part.

First, we know that f is di�erentaible at a. Let’s call f Õ
(a) a concrete symbol,

called k, just to save space. Then

k = lim
hæ0

f(a + h) ≠ f(a)

h
.

Let’s manipulate this equation cleverly:

0 =

A

lim
hæ0

f(a + h) ≠ f(a)

h

B

≠ k (37.27)

= lim
hæ0

f(a + h) ≠ f(a)

h
≠ lim

hæ0

kh

h
(37.28)

= lim
hæ0

f(a + h) ≠ f(a) ≠ kh

h
(37.29)

0 · lim
hæ0

h = lim
hæ0

f(a + h) ≠ f(a) ≠ kh

h
·

3
lim
hæ0

h
4

(37.30)

0 = lim
hæ0

A
f(a + h) ≠ f(a) ≠ kh

h
· h

B

(37.31)

0 = lim
hæ0

(f(a + h) ≠ f(a) ≠ kh) (37.32)

(37.33)

Let’s see how we did these steps. We began by subtracting the number k from both

sides, obtaining the first line. Then we used the fact that this number k equals a

limit, limhæ0
kh
h , to obtain (37.28).
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To obtain (37.29), we used the addition law for limits. Remember that this says

that if the limits of two expressions g and h exist, then the limit of g + h exists.

Moreover, lim g + h = lim g + lim h.

To obtain the next line (37.30), we multiplied both sides by a number called 0,

but expressed as limhæ0 h. The reason for using this expression is to use the product
law for limits, which says lim g · lim h = lim gh, provided that the limits lim g and

lim h both exist. The product law allows us to go from (37.30) to (37.31). Finally,

the last line is obtained by a straightforward cancellation of h.

How does this help? Let’s keep going:

0 = lim
hæ0

(f(a + h) ≠ f(a) ≠ kh) (37.34)

= lim
hæ0

(f(a + h) ≠ f(a) ≠ kh) + lim
hæ0

(f(a) + kh) ≠ lim
hæ0

(f(a) + kh) (37.35)

= lim
hæ0

(f(a + h) ≠ f(a) ≠ kh + (f(a) + kh)) ≠ lim
hæ0

(f(a) + kh) (37.36)

= lim
hæ0

(f(a + h)) ≠ lim
hæ0

(f(a) + kh) (37.37)

(37.38)

First, let’s note that we know there is a number called limhæ0(f(a) + kh); this limit

is straightforwardly computed to equal f(a). But we’re going to keep this number

written as a limit. Then equation (37.35) is obtained from the first line by adding and

subtracting this expression. (Note that if we add, and then subtract this equation,

we are simply adding a term equal to 0! So this does not change the equality.)

We arrive at (37.36) by using the addition law for limits again. Note it is impor-

tant that we know every limit in the previous step existed; that is what guarantees we

can use the addition law and conclude that the limit limhæ0 (f(a + h) ≠ f(a) ≠ kh + (f(a) + kh))

exists.

Then (37.37) is deduced by simply canceling some terms inside the limit.

Importantly, note that we see in (37.37) that the limit limxæa f(x) exists. Mak-

ing the substitution x = a + h, the limit x æ a is computed precisely as h æ 0.

That is,

lim
hæ0

f(a + h) = lim
xæa

f(x). (37.39)

This is because the function j(h) = a+h is continuous, so the limit limhæ0 f(j(h)) =

limxæj(h) f(x).
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3. If f is di�erentiable at a, does limxæa f(x) equal f(a)? Let us continue:

= lim
hæ0

f(a + h) ≠ lim
hæ0

f(a) ≠ lim
hæ0

kh (37.40)

=

3
lim
hæ0

f(a + h)

4
≠ f(a) ≠ lim

hæ0
kh (37.41)

=

3
lim
hæ0

f(a + h)

4
≠ f(a) ≠ k lim

hæ0
h (37.42)

=

3
lim
hæ0

f(a + h)

4
≠ f(a) ≠ k · 0 (37.43)

=

3
lim
hæ0

f(a + h)

4
≠ f(a) ≠ 0 (37.44)

=

3
lim
hæ0

f(a + h)

4
≠ f(a) (37.45)

f(a) = lim
hæ0

f(a + h). (37.46)

(37.40) is obtained by applying the addition law to (37.37).

The next few lines use the fact that f(a) and k are concrete numbers—that is,

constants. This gets us to (37.45).

The passage from (37.45) to (37.46) is just adding f(a) to both sides. Finally,

using (37.39) again, we conclude that

f(a) = lim
xæa

f(x).

That was a long, long path, but we proved our theorem (Theorem 37.0.1): If f
is di�erentiable at a, it is continuous at a. We proved this by verifying all three

conditions in the definition of continuity.
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37.5 Preparation for next time

Let f(x) = 3x + 5. Let a = 2.

(a) Let L = 11 and ‘ = 0.1. Exhibit a number ” guaranteeing the following:

Whenever |x ≠ a| < ”, you know |f(x) ≠ L| < ‘.
(b) If L = 11, is L equal to the limit limxæa f(x)?

(c) Now change L to equal 10, and choose ” = 0.1. (This time, we are fixing ”,

not ‘.) Exhibit a number ‘ guaranteeing the following: Whenever |x ≠ a| < ”, you

know |f(x) ≠ L| < ‘.
(d) If L = 10, is L equal to the limit limxæa f(x)?

37.5.1 Plus One

There is no plus one problem for this last week, as there is realistically no time for

people to come to o�ce hours after these are graded.


