Quiz 2 Solution

Recall that the difference quotient for a function f is given as follows:

$$
\frac{f(x+h)-f(x)}{h}
$$

Compute the difference quotient for the function $f(x)=x^{2}+x$. Your answer should be an expression of x and h.

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\left((x+h)^{2}+(x+h)\right)-\left(x^{2}+x\right)}{h} \\
& =\frac{\left(x^{2}+2 h x+h^{2}+x+h\right)-\left(x^{2}+x\right)}{h} \\
& =\frac{2 h x+h+h^{2}}{h} \\
& =2 x+1+h(\text { when } h \neq 0)
\end{aligned}
$$

The first line is just applying the definition of f to the inputs $(x+h)$ and x. The second line is expanding out $(x+h)^{2}$, the third line is obtained by canceling $x^{2}+x$, and only in the last step do we use the denominator-being careful about the fact that the difference quotient should only be defined when $h \neq 0$.

