Extra Credit Assignment 4

Due Friday, February 12, 11:59 PM

1. Let A be an orthogonal n-by- n matrix. Show that the columns of A form an orthonormal basis for \mathbb{R}^{n}. Conversely, show that any (ordered) orthonormal basis of \mathbb{R}^{n} gives rise to an orthogonal matrix.
2. Is there a sense in which $O_{n}(\mathbb{R})$ looks like it is "built" out of S^{n-1} and copies of $O_{n-1}(\mathbb{R})$?
3. What "dimension" should $O_{n}(\mathbb{R})$ have? (For example, a circle is 1dimensional, while a sphere is 2 -dimensional.)
