Extra Credit Assignment 7

Due Friday, April 2, 11:59 PM

·

(a) Let $f : X \to Y$ be a continuous function. For a given $x_0 \in X$, let $y_0 = f(x_0)$. Show that the function

$$f_{\sharp}: \pi_1(X, x_0) \to \pi_1(Y, f(x_0)), \qquad [\gamma] \mapsto [f \circ \gamma]$$

is a group homomorphism.

- (b) If you are further given a continuous function $g: Y \to Z$, let $z_0 = g(y_0)$. Show that $(g \circ f)_{\sharp} = g_{\sharp} \circ f_{\sharp}$.
- (c) Show that if f is a homotopy equivalence, then f_{\sharp} is a group isomorphism.