Extra Credit Assignment 8

Due Friday, April 9, 11:59 PM

. Fix two topological spaces X and Y, along with a point $x_{0} \in X$. Suppose $f: X \rightarrow Y$ is a continuous function. We will set $y_{0}:=f\left(x_{0}\right)$.

In a previous extra credit assignment, you saw that the function

$$
f_{\sharp}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right), \quad[\gamma] \mapsto[f \circ \gamma]
$$

was a group homomorphism.
(a) Suppose that f is homotopic to g rel x_{0}. (This means that there exists a continuous function

$$
H:[0,1] \times X \rightarrow Y
$$

for which $H\left(t, x_{0}\right)=y_{0}$ for every $t \in[0,1]$.) Prove that $f_{\sharp}=g_{\sharp}$.
(b) If f is a homotopy equivalence, show that f_{\sharp} is a bijection.

