Extra Credit Assignment 9

Due Friday, April 16, 11:59 PM

Choose a positive integer $n \geq 1$; we denote an element of $\mathbb{Z} / n \mathbb{Z}$ by $[a]$, where $a \in \mathbb{Z}$.

Consider the function

$$
\mathbb{Z} / n \mathbb{Z} \times S^{3} \rightarrow S^{3} \quad\left([a],\left(z_{1}, z_{2}\right)\right) \mapsto\left(e^{\frac{2 \pi a i}{n}} z_{1}, e^{\frac{2 \pi a i}{n}} z_{2}\right) .
$$

(Here, i is a square root of -1.) Note that I am using the fact that $\mathbb{R}^{2} \cong \mathbb{C}^{2}$, so I am treating an element of S^{3} as an element of $\mathbb{C}^{2}=\mathbb{C} \times \mathbb{C}$.

Citing theorems from class, compute π_{1} of the space obtained by quotient S^{3} by this action.

