Writing Assignment 3

Due Monday, February 8, 11:59 PM

For last week's extra credit, you had to look up the definition of topology. Let me remind you that a topology on a set X is a collection \mathcal{T} of subsets of X. This collection must satisfy the following properties: (i) The empty set and X are elements of \mathcal{T} , (ii) Any union of elements of \mathcal{T} is again an element of \mathcal{T} , and (iii) Any finite intersection of elements of \mathcal{T} is an element of \mathcal{T} .

Consider the following two metrics on \mathbb{R}^2 :

 $d_{std}(x, x') = \sqrt{(x_1 - x'_1)^2 + (x_2 - x'_2)^2}$ $d_{taxi}(x, x') = |(x_1 - x'_1)| + |x_2 - x'_2|.$

Show that a subset of \mathbb{R}^2 is open with respect to d_{std} (the standard metric) if and only if it is open with respect to d_{taxi} (the taxicab metric).

(This could, of course, inform how we think about the different metrics on $M_{2\times 2}(\mathbb{R})$, and whether the affect the topology of $M_{2\times 2}(\mathbb{R})$.)