Writing Assignment 10

Due Monday, April 26, 11:59 PM

Show that $\mathbb{R}^{n} \backslash\{0\}$ is homotopy equivalent to S^{n-1}.
As a hint: If $n=1$, note that $\mathbb{R} \backslash\{0\}$ "retracts" to $S^{0}=\{ \pm 1\}$. As a start, you should try to construct a retraction of the interval $(0, \infty)$ to the point $1 \in(0, \infty)$. That is, is there a function

$$
H:[0,1] \times(0, \infty) \rightarrow(0, \infty)
$$

so that $H(0, x)=x$ but $H(1, x)=1$? (If so, as you fix x and run t from 0 to 1 , you will see a movie of x moving from its initial position to the point 1.)

