5. Having all the next ones

The goal of this homework assignment is to have you start thinking about some important properties of the set of natural numbers.

Recall that \mathbb{N} is the set of all natural numbers. (In this class, this means \mathbb{N} also includes 0 .) As you know, there is a function from \mathbb{N} to itself called " +1 ." Concretely, this function sends an element $n \in \mathbb{N}$ to $n+1$.

We will call this function t.
Suppose there is some subset S of \mathbb{N} which contains 0 and is closed under t. More precisely: Suppose there is some subset $S \subset \mathbb{N}$ such that (i) $0 \in S$ and (ii)

$$
n \in S \quad \text { implies } \quad t(n) \in S
$$

(In other words, if we know that n is an element of S, then we may conclude that $n+1$ is an element of S.)

Prompt One. Based on your knowledge of the natural numbers, do the above properties imply that S must equal \mathbb{N} ?

Prompt Two. Now let $T \subset \mathbb{N}$ be an arbitrary, non-empty subset of \mathbb{N}. (This has nothing to do with Prompt One at face value.) Based on your knowledge of the natural numbers, must T have a smallest element?

Answer both prompts, one at a time.
As usual, for your homework submission, write a complete response, giving full reasoning. If you do not have an answer, you must explain what explorations you undertook-and you must write at least three appreciably different things that you tried to explore potential answers.

