Lecture 9

Axiomatic thinking and
Peano’s axioms

Your math education so far has probably been about learning what other
people have discovered. And it is very, very rare for you to learn this stuff
while being told what those discoverers knew.

For example, did you know that the first known European person to
try to understand imaginary numbers was also the first European person to
systematically start using negative numbers? In other words, did you know
that both imaginary and negative numbers actually came into European
civilization’s consciousness at around the same time? (For more, you can
learn about the Italian mathematician Girolamo Cardano.)

You might have never expected that. You knew about negative numbers
in elementary school. You didn’t learn about imaginary numbers until high
school or college!

The weird thing about math education is that it’s like playing a video
game, but from a save point that someone else got you to. You didn’t have
to invent numbers—someone got you to that save point, and you just needed
to keep playing. You didn’t have to discover the rules of taking derivatives—
someone got you to that save point, and you took it from there.

9.1 Level zero: Axioms

So, let’s assume that you’re beginning the video game of math from level
zero. You turn on the switch, or boot up the app, or however else you want
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to think of it.

What “moves” are you allowed to use? Where are you beginning? What
is level zero? In other words, what mathematical facts are we even allowed
to employ to get to another level of the game?

You probably expect this to have an answer. Here’s the truth: There
isn’t one.

In fact, to begin playing with any system of logic, you have to choose
what level zero is. In other words, you just declare that some sentences have
to be true. You don’t even define what the words in those sentences are
(you can’t, because to define them, you’d have to in turn know what the
words you use in your definitions mean! So then what do those definitional
words mean? Were they explained in level -17). You just declare that some
sentences, with some words in them, are true.

The above paragraph gives the least romantic description of an aziom.

An aziom is a truth that you declare to be true at the beginning of your
video game. You declaring your axioms is like the Big Bang for your logical
universe.

And the point is, there is a video game for every collection of axioms you
choose. In other words, the logical conclusions you can reach can be different
if you begin with a different set of axioms!

Example 9.1.1. For example, Daniela’s axioms could simply be the follow-
ing sentences:

1. All bananas are delicious.
2. Every apple is a banana.

It does not matter whether your axioms conflict with somebody else’s.
(We all know apples are not bananas, but remember—what we think these
words mean don’t matter. Every collection of axioms must consist of unde-
fined words, and here, “banana” may as well be the word “Planet Omicron
6.)

Based on these axioms, Daniela could conclude: Every apple is delicious.
So Level Zero began with Daniela’s axioms. Concluding that every apple is
delicious gave us another new fact of the universe, and got us to Level One.

Example 9.1.2. An equivalent collection of axioms is:

1. Every burple is deftastic.



9.1. LEVEL ZERO: AXIOMS 113

2. Every snarf is a burple.

Then you could conclude that every snarf is deftastic. Note that “burple,
deftastic, snart” have no meanings. But regardless of what they mean, the
logical conclusion is that every snarf is deftastic.

Example 9.1.3. It is possible to choose a completely broken collection of
axioms. For example:

1. Every burple is deftastic.
2. Every snarf is a burple.

3. There exists at least one snarf that is not deftastic.

The third axiom directly contradicts a logical conclusion of the first two
axioms. After all, if every snarf is deftastic, how could there be a snarf that
is not deftastic? But, based on the axioms, the statement that “there exists
at least one snart that is not deftastic” is both provably true, and provably
false.

Such axioms are called inconsistent. If you begin with an inconsistent col-
lection of axioms, it turns out you can prove that any statement is true, and
that any statement is false. This sounds interesting—to know that inconsis-
tent axioms exist—but that’s about as far as this goes. You’d never want to
work with an inconsistent collection of axioms. They're all equivalent, and
they’re all useless.

Remark 9.1.4. So, in fact, there is an entire field of math that wonders what
our axioms ought to be. There are many commonly accepted axioms, and
for now, it seems the most widely accepted axioms are called the ZF axioms,
after Ernesto Zermelo and Abraham Fraenkel (both German mathematicians,
though the latter moved to Israel for most of his later life). These axioms
were developed by these two mathematicians (and others) and probably came
into final form sometime in the 1920’s.

Remark 9.1.5. And in fact, very smart mathematicians have made mistakes
with Level Zero. There are indeed ways to feel happy with set theory and yet
construct contradictions! For example, it turns out that the logical universe
is inconsistent if you allow the existence of a set of all sets. We might see
that later in class. For now, you can look up Russell’s Paradox.
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9.2 OQOur level zero for the natural numbers

So there are many level zeros. And for now, I would like to focus on how we
know that the natural numbers exist.

Once upon a time, I made a big fuss about the possibility of an alien
species not knowing what we mean by “next.” This is where the discussion
begins.

First, even though we may not “know” that natural numbers exist from
Level Zero, we know in our hearts that they exist. I'd like to write down
some properties that we know about natural numbers:

(N1) First, there’s at least one natural number.

(N2) Second, there’s always a “next” natural number. More precisely, given
a natural number n, there’s a natural number called +1. This “next”
number is unique, in that if n +1 = m + 1, then we know n = m.

(N3) The only natural number that’s not a “next” natural number is zero.

(N4) Finally, every natural number is obtain from zero by applying +1 some
number of times.

Okay, great. I think if we read over that list carefully, we would all accept
that the above are all true statements about N. However, there is a very big
flaw in the last statement: “applying +1 some number of times.” The notion
of “number” we use there is circular! What does it mean to add +1 some
number of times? Do we know what we mean by that if we do not know
what a natural number is?

This is both vexing and fascinating. What even is a number?

One of the first solutions to this issue was developed by Giuseppe Peano
(Italian, 18580-1932). He very cleverly translated all of the above into a
statement about sets. He noticed the following about the set of natural
numbers:

(PN1) N is a non-empty set.
(PN2) There is a function from N to N, we’ll call it ¢, which is injective.

(PN3) Moreover, there is a unique element of N that is not hit by ¢. We will
call this unique element z.
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(PN4) Finally, suppose that S is some subset of N for which (i) z € 5, and
(ii)) Whenever n € N, then #(n) € N. Then S = N.

You should verify that each of these statements is equivalent to the first
facts about natural numbers we just talked about. The translation is by
setting z = 0 and ¢ to be the function sending n to n + 1.

The most amazingly clever part of these statements is the last bit: Instead
of talking about “applying +1 a number of times,” he completely avoids the
notion of number by cleverly articulating a characterization of subsets of N.
It gives a formal description of the intuition that N is the “smallest” thing
you can produce out of 0 and out of +1.

Now, here is a very common thing that mathematicians do now. This
is your first time seeing it, so it seems like cheating. It’s not. We declare
that there must exist a set and a function satisfying the properties above—in
other words, we make the existence an axiom. The axiom(s) asserting the
existence of N and ¢ are called Peano’s axioms.

9.3 Peano’s axioms

Here is one formulation of Peano’s axioms. For it, we assume that we know
what we mean by “sets” and “functions” and “injection.”

Peano’s axioms: There exist a set N, and a function ¢ from N to N,
satisfying the following properties:

(PA1) N is a non-empty set.
(PA2) t is an injection.

(PA3) There is a unique element of N that is not hit by ¢. We will call this
unique element z.

(PA4) Finally, suppose that S is some subset of N for which (i) z € 5, and
(ii) Whenever n € N, then t(n) € N. Then S = N.

If we assume Peano’s axioms, we know that there exists a set N equipped
with a function ¢ of it, and a unique element z € N with some nice property.
In other words, we are not proving the existence of N and t; we are just
taking it for granted as level zero.

We then define the following notation:
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Notation 9.3.1. Suppose N is a set, and t a function, guaranteed by Peano’s
axioms. Then we use the notation N to denote N.

We let 0 denote the element z € N.

We let 1 denote the element #(0).

We let 2 denote the element #(1).

More generally, given an element n € N, we let n + 1 denote t(n).

Thus, we are defining “+1” in terms of t. This is an incredibly abstract
way of thinking about the natural numbers. It is no longer something that
measures size; it is merely characterized as a set with some notion of “next”
as made precise by t.

Remark 9.3.2. If we have time in this course, we will see another set of
axioms—an even more “beginner’s” Level Zero, that will imply the existence
of a set N with a function ¢ as above. In other words, though Peano took
the above as axioms, it turns out we can create a “deeper” set of axioms that
imply the existence of the things Peano wanted.

Remark 9.3.3. This is how abstract mathematics actually goes now-a-days.
We realize that there are some properties that we take for granted, or use, all
the time. It is the properties we use that are useful, so we name the properties
we use. In doing so, we hope to give a new definition or characterization of
the thing we are studying: It used to have a familiar meaning, but we strip
it to have only the properties we care about. Peano’s axioms are one of the
first examples of this principle in action.

Let me emphasize again that this may feel like cheating. That’s okay. But
there is also brilliance. It is incredibly hard to stare at a familiar thing and
realize it is nothing more than a few properties. The deepest mathematical
insights are of this nature.

9.4 The inductive axiom

As I've mentioned, by far, the most clever part of Peano’s axioms is (PA4).
(Finally, suppose that S is some subset of N for which (i) z € S, and (ii)
Whenever n € N, then t(n) € N. Then S = N.)

(PA4) is called the inductive axiom.

It is called the inductive axiom because it states that the set of all natural
numbers is “induced” by beginning with 0, and then just adding 1 repeatedly.
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9.5 Application: Induction

And using the inductive axiom (or, if you prefer, the inductive property of
the natural numbers) we can prove ridiculously powerful theorems.
We will see more of this next time, when we learn about proofs by induc-

tion.



