
Lecture 11

Unique Uniqueness of natural
numbers (equipped with
nextness)

Recall that Peano’s axioms posit the existence of a set N , and a function t
from N to N , satisfying the following:

(PA1) N is a non-empty set.

(PA2) t is an injection.

(PA3) There is a unique element of N that is not hit by t. We will call this
unique element z.

(PA4) Finally, suppose that S is some subset of N for which (i) z œ S, and
(ii) Whenever n œ N , then t(n) œ N . Then S = N .

I asked you last time: What if there exist more than one set and function
satisfying the above properties?

Theorem 11.0.1. Suppose that M is a set, and s is a function from M to
itself, satisfying the above axioms.

Then there is a natural bijection from N to M compatible with s. More
precisely, there is a bijection f : N æ M so that f ¶ t = s ¶ f .

Moreover, this bijection is itself unique. This means if there is another
bijection f Õ : N æ M satisfying f Õ ¶ t = s ¶ f Õ, then f = f Õ.

127



128LECTURE 11. UNIQUE UNIQUENESS OF NATURAL NUMBERS (EQUIPPED WITH NEXTNESS)

Remark 11.0.2. The above theorem says that any two sets satisfying Peano’s
axioms must look “the same,” in that there is a bijection between them (so,
up to relabeling the elements of N by elements of M , N and M look the same)
that also respects t and s (so that this relabeling also respects “nextness”).

In fact, the theorem says even more: The bijection itself is unique if you
demand that the bijection respects “nextness.”

This is a very important point! Remember, if you want to exhibit a bi-
jection between two sets, there are many, many ways to do so. (For example,
there are 5! bijections between two sets with 5 elements.) But the theorem
says that there is only one bijection that respects nextness.

We have not talked yet about what it means for two functions to be equal.

Definition 11.0.3 (Equality of functions). Two functions f and f Õ are called
equal if

1. They have the same domain and the same codomain, and

2. For every element x of the domain, f(x) = f(xÕ) (note this is an equality
of elements of the codomain).

Remark 11.0.4. In other words, the data of N and t is not unique—there
may be another M and s satisfying the same axioms—but there is exactly
one may to “make N and M look the same;” or to “relabel N by M” while
respecting nextness (i.e., while respecting t and s).

This kind of thing is very common in mathematics. The lingo is that any
set satisfying Peano’s axioms is “unique up to unique isomorphism.”

Here, “up to” means “not the same, but there is a bijection between them
respecting the relevant structure (i.e., nextness).”

The proof of the theorem is quite involved, so we’ll take things one step
at a time.

11.1 Aside: Theorems and Lemmas
Definition 11.1.1. A theorem is a statement that has been proven, and for
which (i) The statement is supposed to be either deep, useful, or surprising,
and (ii) The proof is “di�cult.”

Note that these are all very subjective criteria; math is done by humans,
and humans are subjective.
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Sometimes, when we prove a big theorem, it’s best for both the reader
and the writer to break up the proof into small, digestible chunks. And in
doing so, we may sometimes prove a statement that is technical, but useful
or necessary for proving the theorem. Such a statement is called a lemma.
Definition 11.1.2. A lemma is a statement that has been proven, and which
(i) involves a technical proof and (ii) is used to prove another statement (such
as a theorem).

11.2 Proving uniqueness of f

We’ll start o� with something fun: Even if we do not know that f exists, we’ll
show that if f exists, it is unique. In other words, if f and f Õ both satisfy
the properties guaranteed by the conclusion of the theorem, then f = f Õ.
Lemma 11.2.1. Suppose that f Õ is another bijection from N to M for which
f Õ ¶ t = s ¶ f . Then f = f Õ.
Proof. Let S µ N be the collection of those n for which f(n) = f Õ(n).

First, I claim z œ S. In fact, I claim f(z) = zM and f Õ(z) = zM (where
zM œ M is the unique element not hit by s, guaranteed to exist by Peano’s
third axiom applied to M). For if f(z) ”= zM , then f(z) = s(m) for some
m œ M by Peano’s third axiom. Because f is assumed to be a bijection,
then m = f(n) for some n. Therefore, f(z) = s(m) = s(f(n)), and by the
demand that f ¶ t = s ¶ f , we thus see that f(z) = f(t(n)). Because f is
an injection, this means z = t(n), which violates Peano’s third axiom for N .
Therefore, it must be that f(z) = zM .

Now, if n œ S, then t(n) œ S. This is because f(t(n)) = s(f(n)) =
s(f Õ(n)) by the assumptino that n œ S, and hence s(f Õ(n)) = f Õ(t(n)), so
stringing the equalities together, we see f(t(n)) = f Õ(t(n)).

By Peano’s axioms, this means S = N .

11.3 Constructing f

Next, let’s construct the function f that the theorem claims exists.
Construction 11.3.1. Given N , there is a unique element z not hit by t.

Likewise, there is a unique element zM œ M not hit by s.
Let us define a function f from N to M as follows:
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1. f(z) = zM .

2. Let S be the set of elements for which f is defined. Then for any n œ S,
we define f(t(n)) to be s(f(n)).

In particular, we see that S = N by the inductive axiom, so f indeed has
domain equal to N .

Remark 11.3.2. Note that, by definition, f ¶ t = s ¶ f .

11.4 Proving Theorem 11.0.1
Lemma 11.4.1. Let f be the function from Construction 11.3.1. Then for
every m œ M , there exists an n œ N for which f(n) = m. Put another way,
every element of M is hit by f .

We’ll give a proof of the lemma in a moment. But first: At this point,
we’ve seen in this class (many times) the idea of how much a function “hits” of
the codomain. My philosophy has always been concepts first, terms second.
At this point, I think we can agree that it’ll be useful to have a term for the
things that f “hits.” Here it is:

Definition 11.4.2. Let f be a function with domain X and codomain Y .
The image of f is the set

{y œ Y | there exists some x œ X for which f(x) = y}.

The image of f will often be written image(f).

Thus, informally speaking, f is the set of all elements of Y that are hit
by f . Another way to phrase Lemma 11.4.1 is: the image of f is M .

Proof of Lemma 11.4.1. Let R µ M be the set of elements hit by f . (That
is, let R = image(f).)

(i) We know that zM œ R by (1) of Construction 11.3.1.
(ii) Next, suppose that m œ R so that m = f(n) for some n. Then

s(m) œ R because s(m) = s(f(n)) = f(t(n)), where the last equality is
by (2) of Construction 11.3.1.

By the inductive axiom, R = M . (In other words, every element of M is
hit by f .)
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We prove another lemma.
Lemma 11.4.3. Let f be the function from Construction 11.3.1. Then f is
an injection.
Proof. Let R µ M be the set of all m for which at most one element of N
hits m. More precisely, we define

R := {m | If f(n) = m and f(nÕ) = m, then n = nÕ}.}

First, I claim zM œ R. Here is the proof. We know f(z) = zM . At the
same time, suppose there is another element nÕ œ N for which f(nÕ) = zM .
If nÕ ”= z, then we know nÕ = t(a) for some a œ N (by the third of Peano’s
axioms, applied to N). Then we would have that f(nÕ) = f(t(a)) = s(f(a))
(where the last equality is by (2) of Construction 11.3.1). But that f(nÕ) =
s(f(a)) contradicts our knowledge that f(nÕ) = zM . (zM cannot equal s of
anything, again by the third of Peano’s axioms, applied to M .) Therefore,
we conclude that nÕ = z.

Next, I claim that if m œ R, then so is s(m). So, suppose s(m) = f(n) =
f(nÕ). We must show n = nÕ. Well, because s(m) ”= zM (by Peano’s third
axiom applied to M) we know that neither n nor nÕ equal z (because we
defined f(z) = zÕ in Construction 11.3.1). Then, by Peano’s third axiom
applied to N , we know that n = t(l) and nÕ = t(lÕ) for some l and lÕ. Putting
this all together, we see that

s(m) = f(t(l)) = f(t(lÕ)).

By (2) of Construction 11.3.1, we thus see

s(m) = s(f(l)) = s(f(lÕ)).

But s is an injection by Peano’s second axiom, so we see that

m = f(l) = f(lÕ).

Because m œ S Õ, we conclude that l = lÕ, and hence that t(l) = t(lÕ); in other
words, n = nÕ, as we sought to show.

Now we can prove our main theorem:

Proof of Theorem 11.0.1. Let f be the function from Construction 11.3.1.
By Remark 11.3.2, f satisfies f ¶ t = s ¶ f .
By Lemma 11.4.3, f is an injection. By Lemma 11.4.1, image(f) = M .

Therefore, f is a bijection.
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11.5 Exercises
Exercise 11.5.1. Which of the following is guaranteed by Peano’s axioms?

(a) There exists a set N and a function t satisfying Peano’s axioms.

(b) There exists at most one set N and at most one function t from N to N
satisfying Peano’s axioms.

(c) There exists at most one set N and at least one function t from N to N
satisfying Peano’s axioms.

(d) There exists at least one set N and at least one function t from N to N
satisfying Peano’s axioms.

(e) There exists at least one set N and, for every such N , exactly one function
t from N to N satisfying Peano’s axioms.
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Exercise 11.5.2. Which of the following terms are used in Peano’s axioms?

(a) Number

(b) Natural number

(c) 1

(d) Addition

(e) +1

(f) Subset

(g) Function

(h) Injection


