Lecture 13

In-class exercises

Hiro is gone Monday and Wednesday. You will have a guest professor, Stewart Welsh, present to answer any math questions you may have.

On Monday and Wednesday, please work on the following problems (in any order you choose).

13.1 Big questions

Exercise 13.1.1. Is there such a thing as "a set of all sets?" That is, a set whose elements are all conceivable sets?

We saw Cantor's theorem (no set admits a bijection to its power set) last time. If there were a set of all sets, what would Cantor's Theorem have to say about it?

Exercise 13.1.2. We saw early on in class that there is no such thing as a 'biggest number.'

Is there such a thing as a 'biggest set?'

For the purposes of this exercise, let's say that a set Y is bigger than a set X if there exists an injection from X to Y, but there does not exist a surjection from X to Y.

13.2 Practice

Exercise 13.2.1. Suppose that $f: X \to Y$ is a surjection and $g: Y \to Z$ is a surjection. Show that the composition $g \circ f$ is a surjection.

Remember that "injection" and "surjection" can intuitively say things about size, but size is *not* helpful to the proofs we conduct in this class. Instead, we must use the definitions of injection and surjection.

Exercise 13.2.2. Suppose that $f: X \to Y$ is an injection and $g: Y \to Z$ is an injection. Show that the composition $g \circ f$ is an injection.

Exercise 13.2.3. Suppose that $f : X \to Y$ is a bijection. Construct a bijection from Y to X.

Exercise 13.2.4. Given a set X, show that there is always an injection from X to $\mathcal{P}(X)$ (the power set) by constructing one.

150