Lecture 16

Complements, products, sets of functions

Here are two new ways of producing new sets out of old.

16.1 Complements

Let A be a set, and choose a subset $B \subset A$.
Definition 16.1.1. The complement of B in A is the set of all elements in A that are not in B.

Often, when A is implicit or understood, we will often just say "the complement of B."

Exercise 16.1.2. Let A be a set. If B is the empty set, what is the complement of B in A ?

Exercise 16.1.3. What is the complement of A in A ?
Exercise 16.1.4. Let $A=\mathbb{Z}$ and let B be the set of all odd integers. What is the complement of B in A ?

Definition 16.1.5. Any number in the complement of \mathbb{Q} in \mathbb{R} is called an irrational number.

The complement of \mathbb{Q} in \mathbb{R} is called the set of all irrational numbers.

Remark 16.1.6. As usual, I've introduced concepts before using notation. One way to write the complement of B in A is as follows:

$$
\{x \in A \mid x \notin B\}
$$

We will use complements often, so we have notation for complements:
Notation 16.1.7. The complement of B in A is commonly denoted by any of the following notation:

- $A-B$. (This is Hiro's least favorite, as it is a bit too suggestive of subtraction.)
- $A \backslash B$.

When A is implicit, or understood, we often write

$$
B^{C}
$$

for the complement of B.
Warning 16.1.8. In some textbooks, B is not required to be a subset of A. You can still define the complement of B in A in this situation, again as the set of all elements of A not contained in B. So you might often see something like

$$
A \backslash B=\{a \in A \mid a \notin B\}
$$

even when B is not a subset of A.
Regardless of what textbook you are using, the complement of B in A is always equal to the following set:

$$
A \backslash(B \cap A)
$$

16.2 Products

Definition 16.2.1. Let X and Y be sets. Then the Cartesian product, or the direct product, or the product of X and Y is the set of all "ordered pairs"

$$
(x, y)
$$

for which $x \in X$ and $y \in Y$.

We will give a better meaning to ordered pair in a moment. Let's see some examlpes.

Example 16.2.2. Let $X=\{1,2\}$ and $Y=\{a, b, c\}$. Then the product of X and Y consists of the following elements:

$$
(1, a), \quad(1, b), \quad(1, c), \quad(2, a), \quad(2, b), \quad(2, c) .
$$

Example 16.2.3. The product of Y and X (note the switch in order of Y and X from the previous example) consists of the following elements:

$$
(a, 1), \quad(b, 1), \quad(c, 1), \quad(a, 2), \quad(b, 2), \quad(c, 2)
$$

Warning 16.2.4. Note that the elements $(a, 1)$ and $(1, a)$ are different! (The former is in the product of Y and X, while the latter is not.) So, the order matters. This is the sense in which "ordered pair" is used in Definition 16.2.1.

Remark 16.2.5. Let X be a finite set with n elements, and let Y be a finite set with m elements. Then the product of X and Y is another finite set, and it has $n \times m$ elements.

This motivates why we call this the "product" of X and Y.
Warning 16.2.6. A set contains far more information that just the number of elements it has-so, as usual, do not just think of "size" as the only important thing about a set!

That would be as though you consider two people the same if they have the same number of atoms in their body. There's a lot more to people than that!

In many important examples, X and Y are the same set:
Example 16.2.7. Let $X=Y=\mathbb{R}$. Then the product of X and Y contains elements that look like

$$
(0,0), \quad(1,4), \quad(1,1), \quad(\pi, e), \quad(-\sqrt{2}, 2), \quad\left(-\sqrt{2}, \pi^{2}\right)
$$

et cetera. In fact, you are very used to the product of \mathbb{R} and \mathbb{R} - the elements above also express points on the $x-y$ plane.

So, the x-y plane that you are used to drawing from precalculus and calculus is a drawing of the product of \mathbb{R} with itself.

As usual, I have introduced the concept before introducing the notation for the concept. Here is the notation:

Notation 16.2.8. Let X and Y be sets. We denote the product of X and Y by the notation

$$
X \times Y
$$

When $X=Y$, we may also sometimes write

$$
X^{2}
$$

instead of $X \times X$.
Warning 16.2.9. However, it is common that we only write X^{2} when $X=\mathbb{Z}$ or $X=\mathbb{R}$. (So we write \mathbb{Z}^{2} or \mathbb{R}^{2} instead of $\mathbb{Z} \times \mathbb{Z}$ or $\mathbb{R} \times \mathbb{R}$.) When X is an arbitrary set, we often do not write X^{2}, and explicitly write $X \times X$ for the product of X with itself.

Example 16.2.10. \mathbb{R}^{2} is the set of all pairs (x, y) where x and y are real numbers. In other words, \mathbb{R}^{2} is a set we often draw as the x -y plane.

We can take products of more and more sets.
Example 16.2.11. Let W, X, Y be sets. Then $W \times X \times Y$ is the set of all ordered triplets

$$
\{(w, x, y) \mid w \in W, x \in X, y \in Y\}
$$

And, in general, for any $n \geq 1, X^{n}$ is the set of all ordered n-tuples of elements of X.

16.3 Sets of functions

Notation 16.3.1. Let X and Y be sets. We let Y^{X} denote the set of all functions from X to Y.

Example 16.3.2. Let $X=\{1,2\}$ and let $Y=\{$ alice, bob $\}$. Here are all the possible functions f from X to Y :

- $f(1)=$ alice and $f(2)=$ alice
- $f(1)=$ alice and $f(2)=$ bob
- $f(1)=$ bob and $f(2)=$ alice
- $f(1)=$ bob and $f(2)=$ bob

Example 16.3.3. Let $X=\{1,2\}$ and let $Y=\{$ alice, bob, coco $\}$. Here are all the possible functions f from X to Y :

- $f(1)=$ alice and $f(2)=$ alice
- $f(1)=$ alice and $f(2)=$ bob
- $f(1)=$ bob and $f(2)=$ alice
- $f(1)=$ bob and $f(2)=$ bob
- $f(1)=$ coco and $f(2)=$ alice
- $f(1)=$ coco and $f(2)=$ bob
- $f(1)=$ alice and $f(2)=$ coco
- $f(1)=$ bob and $f(2)=$ coco
- $f(1)=$ coco and $f(2)=$ coco

Remark 16.3.4. Suppose that X and Y are finite sets, say with a elements in X, and b elements in Y. Then to define a function, for every element of X, we must choose one of b elements in Y to assign. So the total number of possible assignments is

$$
b \times b \times \ldots \times b
$$

(where there are a copies of b in the product).
In other words, the size of the set of all functions from X to Y is given by

$$
b^{a} .
$$

You can see why some people chose to use the notation Y^{X} for the set of all functions from X to Y.

Warning 16.3.5. As usual, the expression " b^{a} " (for the size of Y^{X}) must not be taken too literally when X or Y are sets of infinite size.

Example 16.3.6. If X is the empty set, Y^{X} consists of exactly on element. This can be rather confusing, so let's walk through it. We've done this before, but it doesn't hurt to do it again.

A function f from X to Y is an assignment-for every element $x \in X$, we must assign an element of Y called $f(x)$.

Imagine X is the set of students in a gym, and Y is some set of colors. You are asked by the gym teacher to go into the gym, and assign each student a color (so they can divide up into teams and play dodge ball or some crazy thing). You enter the gym. If you see no students there (so that X is the empty set), you can proudly say you are finish. You have assigned every student in the gym to a color.

So, there is a one, and exactly one, function from the empty set to any set.

This lines up with the formula b^{a} for the size of Y^{X}, by the way. If $X=\emptyset$, then $a=0$, so $b^{a}=b^{0}=1$.

Example 16.3.7. When $Y=\emptyset$, and if X is non-empty, then Y^{X} is the empty set. That is because there are no functions from a non-empty set to an empty set. (There are no labels to assign!)

16.4 Exercises

Exercise 16.4.1. For the following examples of A and B, write out $A \backslash B$.
(a) $A=\{0,1,2,3\}$ and $B=\{1,3\}$.
(b) $A=\{0,1,2,3\}$ and $B=\{0,3\}$.
(c) $A=\{0,1,2,3\}$ and $B=\{0,1,2,3\}$.
(d) $A=\{0,1,2,3\}$ and $B=\emptyset$.

How many elements are in A, in B, and in $A \backslash B$ in the above examples?
(You can see why some people use the notation $A-B$. However, be careful, as usual: What if A and B are both infinitely large?)

Exercise 16.4.2. For the following examples of A and B, write out $A \backslash B$.
(a) $A=\mathbb{N}, B=\{x \in \mathbb{N} \mid x>0\}$.
(b) $A=\mathbb{Z}, B=\{x \in \mathbb{Z} \mid x>0\}$. (You can give your answer in written words, or using set notation.)
(c) $A=\mathbb{R}, B=\{x \in \mathbb{R} \mid x>0\}$. (You can give your answer in written words, or using set notation.)
(d) $A=\mathbb{R}, B=\mathbb{Q}$.
(e) $A=\mathbb{Z}, B=\mathbb{N}$.

Exercise 16.4.3. Let $W=\{1,2,3\}, X=\{1,2\}, A=\{a, b, c\}$.
Write out the following sets:
(a) $W \times X$
(b) $X \times W$
(c) $W \times A$
(d) $X \times A$
(e) $(W \backslash X) \times A$
(f) $(W \times A) \backslash(X \times A)$

Exercise 16.4.4. Let X and Y be sets, and let $\underline{2}=\{1,2\}$.
Let $A \subset \underline{2}^{X \cup Y}$ be the subset of those functions for which $f(1) \in X$ and $f(2) \in Y$.

Exhibit a bijection between A and $X \times Y$.
Exercise 16.4.5. Using the same notation as the previous problem, exhibit a bijection between $X^{\underline{2}}$ and X^{2}. (This is not a typo-make sure you know what each notation means!)

Exercise 16.4.6. Let X, Y, Z be sets.
(a) Exhibit a bijection between $X \times Y$ and $Y \times X$.
(b) Exhibit a bijection bewteen $(X \times Y)^{Z}$ and $X^{Z} \times Y^{Z}$.

16.5 True or False

Exercise 16.5.1. Which of the following is a true statement?
(a) Cantor's Theorem shows that there is no such thing as a largest set.
(b) Cantor's Theorem shows that the power set is the largest set.
(c) There exist two sets that (i) do not admit a bijection between them, and (ii) contain infinitely elements.
(d) There exists a bijection from \mathbb{N} to $\mathcal{P}(\mathbb{N})$.
(e) There exists a bijection from \emptyset to $\mathcal{P}(\emptyset)$.

Exercise 16.5.2. Which of the following is a true statement?
(a) For any set X, there always exists an injection from X to $\mathcal{P}(X)$.
(b) For any set X, there always exists a bijection from X to $\mathcal{P}(X)$.
(c) For any set X, there always exists a surjection from X to $\mathcal{P}(X)$.
(d) For any set X, there always exists at least one function from X to $\mathcal{P}(X)$.

