
Lecture 16

Complements, products, sets of
functions

Here are two new ways of producing new sets out of old.

16.1 Complements
Let A be a set, and choose a subset B µ A.

Definition 16.1.1. The complement of B in A is the set of all elements in
A that are not in B.

Often, when A is implicit or understood, we will often just say “the
complement of B.”

Exercise 16.1.2. Let A be a set. If B is the empty set, what is the comple-
ment of B in A?

Exercise 16.1.3. What is the complement of A in A?

Exercise 16.1.4. Let A = Z and let B be the set of all odd integers. What
is the complement of B in A?

Definition 16.1.5. Any number in the complement of Q in R is called an
irrational number.

The complement of Q in R is called the set of all irrational numbers.
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Remark 16.1.6. As usual, I’ve introduced concepts before using notation.
One way to write the complement of B in A is as follows:

{x œ A | x ”œ B}.

We will use complements often, so we have notation for complements:

Notation 16.1.7. The complement of B in A is commonly denoted by any
of the following notation:

• A ≠ B. (This is Hiro’s least favorite, as it is a bit too suggestive of
subtraction.)

• A \ B.

When A is implicit, or understood, we often write

BC

for the complement of B.

Warning 16.1.8. In some textbooks, B is not required to be a subset of
A. You can still define the complement of B in A in this situation, again
as the set of all elements of A not contained in B. So you might often see
something like

A \ B = {a œ A | a ”œ B}

even when B is not a subset of A.
Regardless of what textbook you are using, the complement of B in A is

always equal to the following set:

A \ (B fl A).

16.2 Products
Definition 16.2.1. Let X and Y be sets. Then the Cartesian product, or
the direct product, or the product of X and Y is the set of all “ordered pairs”

(x, y)

for which x œ X and y œ Y .
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We will give a better meaning to ordered pair in a moment. Let’s see
some examlpes.

Example 16.2.2. Let X = {1, 2} and Y = {a, b, c}. Then the product of X
and Y consists of the following elements:

(1, a), (1, b), (1, c), (2, a), (2, b), (2, c).

Example 16.2.3. The product of Y and X (note the switch in order of Y
and X from the previous example) consists of the following elements:

(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2).

Warning 16.2.4. Note that the elements (a, 1) and (1, a) are di�erent! (The
former is in the product of Y and X, while the latter is not.) So, the order
matters. This is the sense in which “ordered pair” is used in Definition 16.2.1.

Remark 16.2.5. Let X be a finite set with n elements, and let Y be a finite
set with m elements. Then the product of X and Y is another finite set, and
it has n ◊ m elements.

This motivates why we call this the “product” of X and Y .

Warning 16.2.6. A set contains far more information that just the number
of elements it has—so, as usual, do not just think of “size” as the only
important thing about a set!

That would be as though you consider two people the same if they have
the same number of atoms in their body. There’s a lot more to people than
that!

In many important examples, X and Y are the same set:

Example 16.2.7. Let X = Y = R. Then the product of X and Y contains
elements that look like

(0, 0), (1, 4), (1, 1), (fi, e), (≠
Ô

2, 2), (≠
Ô

2, fi2),

et cetera. In fact, you are very used to the product of R and R—the elements
above also express points on the x-y plane.

So, the x-y plane that you are used to drawing from precalculus and
calculus is a drawing of the product of R with itself.
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As usual, I have introduced the concept before introducing the notation
for the concept. Here is the notation:

Notation 16.2.8. Let X and Y be sets. We denote the product of X and
Y by the notation

X ◊ Y.

When X = Y , we may also sometimes write

X2

instead of X ◊ X.

Warning 16.2.9. However, it is common that we only write X2 when X = Z
or X = R. (So we write Z2 or R2 instead of Z◊Z or R◊R.) When X is an
arbitrary set, we often do not write X2, and explicitly write X ◊ X for the
product of X with itself.

Example 16.2.10. R2 is the set of all pairs (x, y) where x and y are real
numbers. In other words, R2 is a set we often draw as the x-y plane.

We can take products of more and more sets.

Example 16.2.11. Let W, X, Y be sets. Then W ◊ X ◊ Y is the set of all
ordered triplets

{(w, x, y) | w œ W, x œ X, y œ Y }.

And, in general, for any n Ø 1, Xn is the set of all ordered n-tuples of
elements of X.

16.3 Sets of functions
Notation 16.3.1. Let X and Y be sets. We let Y X denote the set of all
functions from X to Y .

Example 16.3.2. Let X = {1, 2} and let Y = {alice, bob}. Here are all the
possible functions f from X to Y :

• f(1) = alice and f(2) = alice

• f(1) = alice and f(2) = bob
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• f(1) = bob and f(2) = alice

• f(1) = bob and f(2) = bob

Example 16.3.3. Let X = {1, 2} and let Y = {alice, bob, coco}. Here are
all the possible functions f from X to Y :

• f(1) = alice and f(2) = alice

• f(1) = alice and f(2) = bob

• f(1) = bob and f(2) = alice

• f(1) = bob and f(2) = bob

• f(1) = coco and f(2) = alice

• f(1) = coco and f(2) = bob

• f(1) = alice and f(2) = coco

• f(1) = bob and f(2) = coco

• f(1) = coco and f(2) = coco

Remark 16.3.4. Suppose that X and Y are finite sets, say with a elements
in X, and b elements in Y . Then to define a function, for every element of
X, we must choose one of b elements in Y to assign. So the total number of
possible assignments is

b ◊ b ◊ . . . ◊ b

(where there are a copies of b in the product).
In other words, the size of the set of all functions from X to Y is given

by
ba.

You can see why some people chose to use the notation Y X for the set of all
functions from X to Y .

Warning 16.3.5. As usual, the expression “ba” (for the size of Y X) must
not be taken too literally when X or Y are sets of infinite size.
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Example 16.3.6. If X is the empty set, Y X consists of exactly on element.
This can be rather confusing, so let’s walk through it. We’ve done this

before, but it doesn’t hurt to do it again.
A function f from X to Y is an assignment—for every element x œ X,

we must assign an element of Y called f(x).
Imagine X is the set of students in a gym, and Y is some set of colors.

You are asked by the gym teacher to go into the gym, and assign each student
a color (so they can divide up into teams and play dodge ball or some crazy
thing). You enter the gym. If you see no students there (so that X is the
empty set), you can proudly say you are finish. You have assigned every
student in the gym to a color.

So, there is a one, and exactly one, function from the empty set to any
set.

This lines up with the formula ba for the size of Y X , by the way. If X = ÿ,
then a = 0, so ba = b0 = 1.

Example 16.3.7. When Y = ÿ, and if X is non-empty, then Y X is the
empty set. That is because there are no functions from a non-empty set to
an empty set. (There are no labels to assign!)

16.4 Exercises
Exercise 16.4.1. For the following examples of A and B, write out A \ B.

(a) A = {0, 1, 2, 3} and B = {1, 3}.

(b) A = {0, 1, 2, 3} and B = {0, 3}.

(c) A = {0, 1, 2, 3} and B = {0, 1, 2, 3}.

(d) A = {0, 1, 2, 3} and B = ÿ.

How many elements are in A, in B, and in A \ B in the above examples?
(You can see why some people use the notation A ≠ B. However, be

careful, as usual: What if A and B are both infinitely large?)

Exercise 16.4.2. For the following examples of A and B, write out A \ B.

(a) A = N, B = {x œ N |x > 0}.
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(b) A = Z, B = {x œ Z |x > 0}. (You can give your answer in written words,
or using set notation.)

(c) A = R, B = {x œ R |x > 0}.(You can give your answer in written words,
or using set notation.)

(d) A = R, B = Q.

(e) A = Z, B = N.

Exercise 16.4.3. Let W = {1, 2, 3}, X = {1, 2}, A = {a, b, c}.
Write out the following sets:

(a) W ◊ X

(b) X ◊ W

(c) W ◊ A

(d) X ◊ A

(e) (W \ X) ◊ A

(f) (W ◊ A) \ (X ◊ A)

Exercise 16.4.4. Let X and Y be sets, and let 2 = {1, 2}.
Let A µ 2XfiY be the subset of those functions for which f(1) œ X and

f(2) œ Y .
Exhibit a bijection between A and X ◊ Y .

Exercise 16.4.5. Using the same notation as the previous problem, exhibit
a bijection between X2 and X2. (This is not a typo—make sure you know
what each notation means!)

Exercise 16.4.6. Let X, Y, Z be sets.

(a) Exhibit a bijection between X ◊ Y and Y ◊ X.

(b) Exhibit a bijection bewteen (X ◊ Y )Z and XZ ◊ Y Z .
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16.5 True or False
Exercise 16.5.1. Which of the following is a true statement?

(a) Cantor’s Theorem shows that there is no such thing as a largest set.

(b) Cantor’s Theorem shows that the power set is the largest set.

(c) There exist two sets that (i) do not admit a bijection between them, and
(ii) contain infinitely elements.

(d) There exists a bijection from N to P(N).

(e) There exists a bijection from ÿ to P(ÿ).
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Exercise 16.5.2. Which of the following is a true statement?

(a) For any set X, there always exists an injection from X to P(X).

(b) For any set X, there always exists a bijection from X to P(X).

(c) For any set X, there always exists a surjection from X to P(X).

(d) For any set X, there always exists at least one function from X to P(X).


