Lecture 17

Some facts about bijections; ifs

We’re going to build toward the following theorem:
Theorem 17.0.1. There exists a bijection from N to Q.

Remember, I made the claim in previous classes that N, Z, Q all admit
bijections between them, but there is no bijection from any of these three
sets to R.

There are many ways of proving the above theorem; I'm going to prove
it not by making an explicit bijection, but by invoking some generally useful
statements about injections, surjections, and bijections.

17.1 Bijections as something transitive

Before we get to proving the theorem, I'd like to set some context. Consider
the following statement:

“if A has the same size as B, and if B has the same size as C, then A has
the same size as C'”

This is probably intuitively true to you. But as of now the statement is
informal, so let’s turn it into the mathematics we know how to articulate:

Proposition 17.1.1. If there exists a bijection from A to B, and if there
exists a bijection from B to C, then there exists a bijection from A to C'.

This proposition confirms our intuitions about size, and that “admitting
a bijection” at least seems consistent with the notion of “being equal in size.”
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Proof. Let f: A — B and g : B — C be bijections. I claim that go f is a
bijection.

To show this, we must show that go f is both an injection and a surjection.

Well, f is an injection and g is an injection (because each is a bijection).
And we proved in homework that the composition of two injections is an
injection. So g o f is an injection.

I also proved in a previous lecture notes that the composition of two
surjections is a surjection. So g o f is also a surjection.! This completes the
proof. ]

Remark 17.1.2 (Transitivity). You might remember from a past mathe-
matical life that inequalities satisfy a “transitive” property:

If xr <yandy<z then z < z.
Equality satisfis a transitive property too:
If x =y and y = 2, then x = 2.

Many relations in life satisfy this transitive property. We've just added to the
list: We've seen that the notion of “admitting a bijection” is also transitive.

Example 17.1.3. Suppose X admits a bijection to Y, but that X admits no
bijection to Z. Then Y admits no bijection to Z. (You can prove this by a
proof by contradiction, using the transitive property of admitting bijections.)

“Admit a bijection” is a clunky phrase. We’'ll now introduce the follow-
ing terminology. The word “cardinality” has a more precise meaning we’ll
encounter later in our course.

Definition 17.1.4. Let X and Y be sets. We say that X “has the same
cardinality as Y7 if there exists a bijection from X to Y.

You can think of “cardinality” as a fancy word for size. We’ll see what it
actually means later in this course.

Note f and g are each surjections, because the are each bijections.
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17.2 An injection one way guarantees a sur-
jection the other way

Intuitively, an injection from X to Y seems to tell us that Y is “at least as
large as X.” Likewise, a surjection from Y to X seems to tell us the same
thing. The following formalizes this intuition:

Proposition 17.2.1. Suppose that X and Y are non-empty sets. Then
there exists an injection from X to Y if and only if there exists a surjection
from Y to X.

Remark 17.2.2. For some of us, this may be the first time we have seen
the phrase “if and only if.” It is often abbreviated by the letters “iff.”

What does this mean? Let’s think through it logically. “p is true iff q is
true” means “p is true if q is true, and p is true only if q is true.”

In other words, p is true exactly when ¢ is also true, and vice versa.

Such p and q are called “equivalent” statements. This is because the only
situations in which p is true are exactly the only situations in which q is true.

To prove that p and q are equivalent statements, it suffices to prove two
things: That p implies q, and that q implies p.

In other words, it suffices to prove “if p then q” and “if q then p.”

Remark 17.2.3 (Converse). Given the logical statement “if p then q,” the
statement “if q then p” is called the converse of the original statement.

Thus, p and q are equivalent exactly when “p implies q” is true, and when
the converse is true.

Proof of Proposition 17.2.1. Suppose that there exists an injection from X
to Y. Call it f. Choose some element zy € X (which we can do because X
is assumed non-empty) and define a function ¢ from Y to X as follows:

The unique z for which f(z) =y if y € image(y)
9(y) = . .
xo if y ¢ image(y).

It is straightforward to see that g is a surjection.? So we have shown that if
there is an injection from X to Y, then there is a surjection from Y to X.

2Choose some z € X; we must exhibit some y € Y for which g(y) = x. For this, just
set y = f(x); by the definition of g, we see that g(y) indeed equals x.
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Let us now show the converse—that if there exist a surjection from Y
to X, then there exists an injection from X to Y. Let g : Y — X be any
surjection. Then for every x € X, there exists some y, for which g(y,) = «.
For every x € X, choose such a y,, and let f(x) = y,.

To see that f is an injection, suppose that f(x) = f(2/). Then y, = y.,
50 9(Yx) = g(yx). However, by definition of ypn, we see that x = g(y.) and
' = g(y»). Putting the equalities in this paragraph together, we see that
x=ua.

This completes the proof. O
Remark 17.2.4. In proving the converse, we had to choose some y for
every x. It isn’t entirely obvious that we can do this—well, actually, this
is a litmus test for what kind of mathematician you are. Even among the
most sophisticated professionals, it’s either “intuitively obvious” or “not at
all obvious” that one can make choices like this.

As it turns out, even on top of the usual axioms of set theory, we actually
need an additional axiom in mathematics to allow us to choose the way we
needed to choose in the previous proof. The fact that we can—given an
arbitrary collection of sets—always choose an element from each set and the
collection while remembering which collection it came from, is called the
axiom of choice.

Note that the previous proof didn’t give us an explicit injection. We saw
that we could “make some choices” to construct an injection. This is typical
of proofs that employ the axiom of choice—we end up with things while
having no grasp of how to actually construct the things.

Mathematicians (like me) who are okay with such proofs are called “non-
constructivist” mathematicians. Some mathematicians are constructivist,
which means they only utilize proofs which explicitly construct the things
asserted to exist.

I would advocate that these two different schools of thought are just as
philosophical as they are scientific.

17.3 When two statements are equivalent

We have encountered the language of “if and only if,” so I'd like to explicate
it.

One of our biggest homework assignments says that two definitions of
rational numbers are “equivalent.”
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In the assignment, we study two properties one could ask of a real number:

(a) The number can be expressed as a fraction of two integers.

(b) The number’s decimal expansion eventually repeats some finite string of
digits.

What we saw is that “if a number satisfies (a), it satisfies (b)” and “if a
number satisfies (b), then it satisfies (a).”

In other words, a number satisfies both (a) and (b), or neither.

In homework, we interpreted this to mean that the set of numbers satis-
fying (a) is the same as the set of numbers satisfying (b).

Today, I'd like to talk about the logical structure of such a situation.
Indeed, instead of thinking about two sets as being equal, we can speak of
two logical statements as being equivalent.

17.3.1 If

Math is all about if statements. For example “If a prime number is bigger
than 3, then it is odd.” So it’ll be important for us to understand what it
means to use the word “if.”

The word “if” sets up the hypotheses for something to be valid. For
example, the statement all animals have wings is false. But it is true under
some conditions. If an animal is a bird, then it has wings. There may be
many conditions that make it true: If an animal is a bat, then it has wings.

And let’s be explicit about what “if ... then ...” statements actually tell
us in math. A phrase of the form “if p then q” is a short way of saying “if p
is true, then q must be true.”

Not every if-then statement is true. For example, here is a mix of true
and false examples:

1. If T am a human being, I can walk. (This is a false statement. There
are plenty of human beings who cannot walk.)

2. If pis an integer, it must be a prime number. (This is a false statement.
There are plenty of integers that are not prime numbres.)

3. If p is a prime number, it is an integer. (This is a true statement.)

4. If p is a prime number and if p is even, then p is 2. (This is a true
statement.)
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As you can see, sometimes we omit the “then” in if-then statements. That’s
okay.

Finally, in English, it is common to retain the logical meaning of an if
statement even after changing the order of words. For example, the following
mean the same thing:

1. The train will be late if it does not leave on time.

2. If it does not leave on time, the train will be late.

3. If the train does not leave on time, then the train will be late.

4. If the train does not leave on time, the train will be late.
More abstractly, the following mean the same thing:

1. If p then q.

2. qif p.

3. p implies q.
Notation 17.3.1. Given two statements p and q, we let

p=q

denote the statement “if p then q.” Equivalently, p = ¢ means “p implies

q.”
Note that p = ¢ is just another statement. It may true and it may be
false.

Example 17.3.2. “n is prime = n is odd” is a false statement.
“n is prime and larger than 3 = n is odd” is a true statement.

17.3.2 Only if

Now, in everyday life, we sometimes come across the phrase “only if.” For

example, “You can run for President only if you are at least 35 years old.”
Let’s be careful about what this means. “Only if” does not mean if.
Consider: “You can run for President if you are at least 35 years old.”

This is a false statement, because to run for President, you must also have
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been born in the United States. Indeed, “You are at least 35 =— You can
run for President” is a false statement.

Consider: “You can run for President only if you are at least 35 years
old.” This is a true statement.

Warning 17.3.3. Be careful: In everyday life, some people use “only if” to
imply “if.” In the usual logical interpretation of the term “only if,” this is an
incorrect use.

In fact, “p only if q” has the exact same truth value as the following
statements:

(a) “pis only true in situations where q is also true.”

(b) “if p is true, it must be that q is true.” (Because p can only be true only
when q is true.)

(c) “if p then q” (By the above, if p is true, then it must be that q is
true—because p can only be true when q is true.)

(d) “if q is not true, then p must be not true.”

17.3.3 If and only if

Putting it altogether, to say
“pif q” and “p only if q”

istosay ¢ = pand p = ¢. In other words, p and q can only ever be
true at the same time. They are either both true, or both false. This is what
we mean when we say that p and q are logically equivalent.

Definition 17.3.4. We say that two statements p and q are equivalent if
p — qand ¢ = p. When p and q are equivalent, we write

p <— q.
This symbol is read aloud:

p if and only if q.
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Of course, “p <= ¢” is just a new statement. We say that p is equivalent
to q if “p <= (” is a true statement.

Example 17.3.5. The following are all true statement.

1.

Let T be a triangle. Then T has two sides of equal length if and only
if T has two angles of equal size.

. Let N be a natural number. Then N ends in 0, 2, 4, 6, or 8 if and only

if N is divisible by two.

Let x be a real number. Then x > 0 if and only if there exists a real
number y for which y? = z.

In particular, the above illustrate examples of equivalent statements. (“7°
has two sides of equal lengths” if equivalent to “T" has two angles of equal

size.”)

17.3.4 Converses

So, p is equivalent to ¢ when p = ¢ AND ¢ = p.

Definition 17.3.6. We say that p = ¢ is the converse to ¢ = p.

It is often the case that an if-then statement is true, but that its converse
is false. (This is what makes equivalent statements special!)

Example 17.3.7. 1. Let R be a four-sided shape. “If R is a square, then

it has four right angles” is a true statement. But its converse: “If R
has four right angles, then it is is a square” is a false statement.

“If T have three trillion dollars, then I have more money than the state
of North Dakota” is a true statement. But its converse, “If I have
more money than the state of North Dakota, then I have three trillion
dollars” is a false statement.

Remark 17.3.8. It is a very common mistake in life that human beings take
a true if-then statement, and assume its converse to be true.
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17.3.5 Revisiting our main result

Let’s just look at our main result from today again. We can succinctly state
it as follows. Let X and Y be non-empty sets. Then

There exists an injection X — Y <= There exists a surjection ¥ — X.

17.4 Exercises

Exercise 17.4.1. Write the converse to each of the following statements.
(a) If a banana is delectable, then the pineapple wins.

(b) If R is a triangle, then it has more than two sides.

(c) If the cyclops is awake, then Odysseus is in trouble.

Exercise 17.4.2. Let X,Y,Z be non-empty sets. Suppose X admits an
injection to Y, and Z admits a surjection to Y. Prove that X admits an
injection to Z.

Exercise 17.4.3. Suppose p, q,r are three statements. Suppose that p —
q,q = r,and r = p. Are the three statements equivalent?

What if py, ps,...,pn is a collection of n statements, and you know that
pi = pip1t=1,2,...,n—1, and that p, = p;. Are the n statements
equivalent?



