Lecture 19

Exercises: And/Or/Negation, implication, Truth Tables

Exercise 19.0.1. Let A and B be a collection of statements, and where each statement in A or B is known to be either true or false (but not both).

Let T(A) be the subset of A and consisting of all elements of A that are true, and F(A) the subset of A consisting of false statements. Likewise define T(B) and F(B).

Which of the following is true?

(a) If $(p,q) \in T(A) \times T(B)$, then "p and q" is a true statement.

(b) If $(p,q) \in F(A) \times T(B)$, then "p and q" is a true statement.

(c) If $(p,q) \in T(A) \times F(B)$, then "p and q" is a true statement.

(d) If $(p,q) \in F(A) \times F(B)$, then "p and q" is a true statement.

(e) If $(p,q) \in T(A) \times T(B)$, then "p or q" is a true statement.

(f) If $(p,q) \in F(A) \times T(B)$, then "p or q" is a true statement.

(g) If $(p,q) \in T(A) \times F(B)$, then "p or q" is a true statement.

(h) If $(p,q) \in F(A) \times F(B)$, then "p or q" is a true statement.

(i) $A \times B = (T(A) \times T(B)) \cup (T(A) \times F(B)) \cup (F(A) \times T(B)) \cup (F(A) \times F(B))$.

Exercise 19.0.2. You have been given the truth tables for \implies and \neg . Using these, fill out Table 19.1. What do you notice about the third column and the last column?

Exercise 19.0.3. For each statement p below, write out (a statement equivalent to) $\neg p$.

- (a) $a \ge 0$.
- (b) ab = 0.
- (c) For every person x, there exists a person y with whom they can live happily ever after.
- (d) Every happy family is happy for the same reason.
- (e) Every dog has its day.
- (f) Every situation has a silver lining.
- (g) For every situation, there exists a silver lining.
- (h) For every $\epsilon > 0$, there exists a $\delta > 0$ so that $0 < |x a| < \delta \implies |f(x) L| < \epsilon^{-1}$
- (i) For every $\alpha \in \mathcal{A}$, x is an element of U_{α} .²
- (j) For some $\alpha \in \mathcal{A}$, x is an element of U_{α} .³

¹Recall this is what it means for a function f to have a limit L at a.

²Recall this is what it means for x to be in the intersection $\bigcap_{\alpha \in \mathcal{A}} U_{\alpha}$.

³Recall this is what it means for x to be in the union $\bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$.