
Chapter 1

Symbolic Logic – The thing that
really separates us from the apes.

There was things which he stretched, but mainly he told the truth.
–Mark Twain, Huckleberry Finn

Somebody who thinks logically is a nice contrast to the real world.
–The Law of Thumb

How do humans communicate with each other? This question has many different pos-
sible answers. We are all certainly aware of the power of a facial expression or a hand
gesture. However, each of these types of communication is often open to interpretation.
One person may give the same hand gesture to two different people and those people may
interpret it differently. This difference of interpretation may depend on many factors, too
many in fact to go into here, but suffice it to say that mathematical proofs are not often con-
structed using facial expressions or hand gestures. Instead, we rely on written language.
How then do we ensure that our language does not leave room for interpretation? This is
sometimes a difficult chore, but in mathematical language we seldom run into this problem.
The primary way we get around this is through the use of symbolic logic. According to
Hale, “Logic comprises the rules by which mathematicians operate, the “grammar” of the
language.” [9] That is, logic is the tool we will use to create proofs. A proof is built up of
statements, each of which follows from the preceding statement or statements.

1.1 Statements

Definition 1.1. A statement is a declarative sentence which is either true or false, but not
both.

Note. Here we mean that the truth value of the statement does not depend on the person who is reading it. That
is, it is possible for everyone to agree on the same truth value without regard to personal opinion.

Example 1.2. The following are examples of statements:

1. The Canadian national anthem is called O Canada.
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2. The moon is made of green cheese.

3. Today is Wednesday.

4. James K. Polk was the 11th President of the United States.

Example 1.3. The following are not examples of statements.

1. Are you from Montana?

2. He is six feet tall.

3. Chocolate is better than vanilla.

4. Go west young man.

Question 1.4. Why are the items in Example 1.3 not examples of statements?

Exercise 1.5. Determine which of the following are statements. For the ones that are not
statements, explain why not. If so, determine the truth value of the statement.

1. Calvin Coolidge was the greatest American President.

2. The square root of a rational number is always a rational number.

3. Mixing yellow and red paint will give you orange paint.

4. Life is like a box of chocolates.

5. When will the Red Sox win the World Series?

6. This sentence is false.

7. A group of owls is called a parliament.

8. Every former President of the United States is buried in the United States.

1.2 Compound statements and logical connectives

Now that we have an idea of what a statement is, we need to see how to put them together
to form more complex statements and proofs. Then we will be in the position to discuss
the rules of logic as they apply to compound statements, which are statements formed by
simpler statements using logical connectives or implications. This gives us the following
axiom about the construction of compound statements.

Axiom 1.6. If A and B are statements then so are:
1. Not A. (∼ A) (negation)
2. A and B (A∧B) (conjunction)
3. A or B (A∨B) (disjunction)
4. If A, then B. (A⇒ B) (implication)
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Given that we can combine statements to form new statements, we need to figure out
how to determine the truth or falsity of a compound statement. In mathematics there is
seldom much to argue about with regard to truth, but how do we figure it out? We’ll start
with the simplest way to form a new statement, the negation. As the name suggests, the
negation of a statement has the opposite truth value. Here is the truth table for a negation.

A ∼ A
T F
F T

Since we’re not focused on symbolic logic as a core of this course, we will restate this as
an axiom.

Axiom 1.7. If A is a statement with a given truth value, then ∼ A is a statement with the
opposite truth value.

Exercise 1.8. Write the negation of the following phrases.

1. Pi is a positive real number.

2. Georgia is the eleventh largest state.

3. Flatland State University has no major in paleontology.

It will be worth your while to start thinking about how to form the negation of a state-
ment. In later sections we will see that the negation of a statement can sometimes be a
helpful thing when trying to prove the statement. Once we have more machinery, we will
be able to create more interesting examples of negation that may come in handy. Stay
tuned.

Now we’ll move on to the logical connectives and and or. We again use truth tables to
define the truth of these compound statements from the truth of their constituent parts.

A B A∧B
T T T
T F F
F T F
F F F

A B A∨B
T T T
T F T
F T T
F F F

Notice the structure of the truth tables. The statement “A and B” is true only when both
A and B are true. That is, an and statement is false if either part is false. Meanwhile, the
statement “A or B” is true if either part of the statement is true. In spoken language, it is
often the case that an or statement will only be true when one part or the other is true, but
not both. For example in a restaurant there may be a menu option for Soup or Salad.
This would imply that you could have one or the other, but probably not both without
paying extra. This kind of connective is called an exclusive or and is commonly used in
computer science. We will not use this connective in mathematical proofs.

For the sake of completeness and consistency, we include axioms that correspond to the
truth tables for the logical connectives and and or, just as we included the truth table for
negation.
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Axiom 1.9. Let A and B be statements. Then the statement A∧B is true if and only if both
A and B are true.

Axiom 1.10. Let A and B be statements. Then the statement A∨B is true unless both A
and B are false.

Exercise 1.11. Determine what information would be necessary to determine whether each
of the following statements is true or false. Then, determine the truth values.

1. The capital of Spain is Barcelona and today is Wednesday.

2. The capital of Spain is Barcelona or today is Wednesday.

3. Yao Ming is short and Verne Troyer is tall.

4. The ratio of the circumference of a circle to its diameter is 3 or the capital of Indiana
is Indianapolis.

5. Water boils at 100◦ Celsius and freezes at 0◦ Fahrenheit.

6. A boar is a kind of a pig and an uninteresting person.

Now we’re ready to attempt to make our first proof. The following is a pair of state-
ments that are known as DeMorgan’s Laws. They display the relationship between negation
and the logical connectives and and or. You may want to think of them as symbolic logic
analogues of the distributive property that you are familiar with, though this metaphor is not
quite precise. You will see other analogues of the distributive property very soon. In the ex-
ercises that follow, the instructions are to show that two statements are logically equivalent.
By logically equivalent, we mean that two compound statements have the same truth values
for each choice of truth value for the statements that make up the compound statement. In
order to show this, you will need to construct a truth table. Once we have these new tools
in place, we will be in a position to give the constituent statements a mathematical context
and begin proving mathematical statements.

Problem 1.12 (DeMorgan’s Laws). Let A and B be statements and establish the following:

1. ∼ (A∧B) is logically equivalent to (∼ A) ∨ (∼ B)

2. ∼ (A∨B) is logically equivalent to (∼ A) ∧ (∼ B)

Before we move on to other logical connectives we’ll collect a few “algebraic” proper-
ties of the connectives we already have.

Problem 1.13 (The Commutative Property). Prove each of the following:

1. A∧B is logically equivalent to B∧A

2. A∨B is logically equivalent to B∨A

Problem 1.14 (The Associative Property). Prove each of the following:

1. (A∧B)∧C is logically equivalent to A∧ (B∧C)

2. (A∨B)∨C is logically equivalent to A∨ (B∨C)
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Problem 1.15 (The Distributive Property). Prove each of the following:

1. A∧ (B∨C) is logically equivalent to (A∧B)∨ (A∧C)

2. A∨ (B∧C) is logically equivalent to (A∨B)∧ (A∨C)

1.3 Implications

Now we’ll examine compound statements of the form “if A, then B.” In this statement the
“if A” part is called the antecedent or hypothesis and A is called the sufficient condition
for the implication. (Why?) The “then B” part is called the consequent or conclusion and
B is called the necessary condition for the implication. (Why?) In mathematical proofs we
will encounter this statement form often. The truth table for an implication is as follows:

A B A⇒ B
T T T
T F F
F T T
F F T

It seems to be counterintuitive that an implication could be true if the antecedent is false.
Here’s an example that may help you see why we might want to construct our truth table
this way:

Suppose that your uncle Ted tells you that if you get an A in this class, then he
will pay for your next semester’s tuition. If you get an A and he pays, then he
told you the truth. On the other hand, if you get an A and he does not pay, then
you can conclude that he lied to you. But if you do not get an A, then whether
he pays or not, in neither case can you conclude that he lied to you. Thus, if
we choose a truth table in which the antecedent of an implication being false
goes with the statement form being true, then we are consistent with this idea.

As before, we now include an axiom that we can use when we are proving a statement in
the form of an implication.

Axiom 1.16. Let A and B be statements. Then the statement “If A, then B” is true unless
A is true and B is false.

Exercise 1.17. Determine the truth or falsity of the following statements.

1. If x is an integer, then x3 > 0.

2. If y is a positive integer, then y can be written as a sum of powers of two.

3. If π is a rational number, then the area of a circle is E = mc2.

4. If Homer Simpson is the President of the United States, then Marge Simpson is the
Queen of England.

5. If Jupiter has more than three moons, then we live in the 20th century.
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