
Lecture 26

R is uncountable. What’s next?

Today is the last lecture. We’ll prove:

Theorem 26.0.1. There exists a bijection between P(N) and R.

By Cantor’s Theorem, we conclude:

Corollary 26.0.2. R is not countable.

And the proof will use Cantor-Schröder-Bernstein. So we’ll be using every
major idea we’ve learned in this class!

26.1 Some Lemmas
Let’s leave these lemmas as black boxes; we’ll prove them later in the notes.

Lemma 26.1.1. There exists a bijection between P(N) and the interval [0, 2].

Lemma 26.1.2. R admits a bijection to the open interval (0, 1).

And for good measure, let me remind you of the following:

Theorem 26.1.3 (Cantor-Schröder-Bernstein, Theorem 18.1.1). If there ex-
ists an injection from X to Y , and an injection from Y to X, then there exists
a bijection from X to Y .
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26.2 The proof
Proof of Theorem 26.0.1. First, there is a bijection P(N) ≥= [0, 2] by Lemma 20.5.

So it su�ces to show that there exists a bijection between [0, 2] and R.
We will use Cantor-Schöder-Bernstein to prove this. In other words, all we
need to show is that there is an injection from [0, 2] to R, and an injection
from R to [0, 2].

(1) It is obvious there is an injection from [0, 2] to R because [0, 2] µ R.
(2) By Lemma 26.1.2, there is a bijection

R
≥=

26.1.2
// (0, 1).

There is obviously an injection

(0, 1) Òæ [0, 2]

because (0, 1) µ [0, 2].
So the composition gives an injection R Òæ [0, 2].
This completes the proof.

26.3 What’s next?
Before we prove the lemmas, I want to take a moment to discuss where you
can go next in mathematics.

26.3.1 Mysteries of the logical universes
We’ve seen that there is no such thing as a largest set; and in particular,
there is no such thing as a set of all sets. There is a di�erent paradox, called
Russell’s paradox, which tells us why we should not be able to even discuss
“the set of all sets” in logic; more accurately, if you think of logical statements
as statements that can be built out of more basic statements, “set of all sets”
is actually a phrase that should not be allowed to be built. (This is a di�erent
reason, independent of size, as to why the set of all sets should not exist.)

Depending on your taste, this is either mumbo-jumbo, or incredibly deep
and interesting. If you are interesting in understanding more about formal
logic; how thinking beings can create and define the rules of a logical universe;
and what mathematical results rely on such rules; the person to talk to in
our department is Will Boney.
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26.3.2 Shapes and Topology
More than once, you probably wanted to draw pictures in this class. For
example, [0, 2] is not easily thought of as a set, but easily drawn as a closed
interval.

The ability to draw a set has hidden within it more structures of that
set—we think of the elements of [0, 2] as ordered (we know when one is
bigger than another) and in some sense “without gaps.” It has a shape.

Topology is the study of shapes. Though 4330 is a bit abstract and often
fails to explain why the things you learn there have anything to do with
shapes, a class like 4337D will allow you to explore these things. You’ll learn
how to use the ideas from this class as a foundation to talk about more
abstract shapes: In higher dimensions, in real life, in data sets.

26.3.3 Symmetries and modern algebraic notions
Modern algebra, or abstract algebra, gives powerful ways to think about
symmetries. It was kicked o� by a mathematician named Evariste Galois,
and also Sophus Lie; thanks to them, it turns out that solutions to the
equation x

8 ≠ 2x
4 ≠ 4 has exactly the symmetries of a square. Don’t worry,

this sentence didn’t make sense to most mathematicians before the 1900’s,
either. But you can see how powerful we can become if we realize that we
can think about symmetries of solutions to equations the same way we can
think about symmetries of shapes.

26.3.4 What is R? Why does calculus make sense?
We got to talk about how to articulate the existence of N (Peano’s axioms),
how to construct Z and Q. We haven’t talked about how to construct R,
which really is the beginning of a field called “analysis.” And once you
construct R, you can finally begin to dot the Is and cross the Ts of calculus—
why did all that stu� even function properly?

26.4 Proof of Lemma 26.1.1
You know about decimal expansions of a real number. This proof uses the
idea of a “binary expansion.”



244 LECTURE 26. R IS UNCOUNTABLE. WHAT’S NEXT?

In a decimal expansion, we insert one of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8,
9 at every place to express a number:

13.267 . . . .

And, to be precise, the above decimal represents the number

(1 ◊ 101) + (3 ◊ 100) + (2 ◊ 10≠1) + (6 ◊ 10≠2) + (7 ◊ 10≠3) + . . . .

This is called a “base 10” expansion.1 In computer science, and sometimes n
math, “base 2” expansion is more common. Just as base 10 is called decimal,
sometimes base 2 is called binary.

In base 2, you are only allowed to use the digits 0 and 1. So a number
might look like

1101.01101 . . .

and the above would represent the number

(1◊23)+(1◊22)+(0◊21)+(1◊20)+(0◊2≠1)+(1◊2≠2)+(1◊2≠3)+(0◊2≠4)+(1◊2≠5)+. . . .

And every real number can be expressed this way.
Now, what does this have to do with establishing a bijection between

P(N) and [0, 2]?
Well, first, we get an injection from [0, 2] to P(N) by doing the following.

Given a real number x, write out a binary expansion. If x œ [0, 2], we can
write a binary expansion where the whole number’s place (i.e., the 0th place)
is either 0 or 1. Then one can construct a set g(x) µ N so that n œ g(x)
exactly if the ≠nth place of the expansion is 1.

Example 26.4.1. If x has binary expansion

1.1000100000 . . . ,

notice that the 0th place, the 1st place, and the 5th place are equal to 1, and
all other places are 0. Sog(x) = {0, 1, 5}.

Here are more examples:

(a) If x = 0.000000 . . ., g(x) = ÿ.
1
We probably use base 10 because we have 10 fingers, though I have no scientific basis

for this claim.
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(b) If x = 0.10000000 . . ., g(x) = {1}.

(c) If x = 0.1010100000 . . ., g(x) = {1, 3, 5}.

(d) If x = 1.11111 . . ., g(x) = N.

(e) If x = 0.11111 . . ., g(x) = N \ {0}.
This defines a function g : [0, 2] æ P(N), and g is an injection—for if

g(x) = g(xÕ), then x and x
Õ has the same binary expansion, so they are the

same number.
On the other hand, we can define a function f : P(N) æ [0, 2] that is also

an injection. Given a subset A µ N, declare f(A) to be the binary expansion
all of whose odd places are given by 0, but whose ≠2nth place is given by 0
if n ”œ A and 1 if n œ A.
Example 26.4.2. 1. If A = N, then f(A) = 0.101010101010 . . ..

2. If A = {1, 2, 3}, then f(A) = 0.101010000000 . . ..

3. If A == ÿ, then f(A) = 0.0000000 . . ..
Then f is an injection.2

Proof of Lemma 26.1.1. We have shown that P(N) and [0, 2] admits injec-
tions to each other (called f and g above); so by Cantor-Schröder-Bernstein,
there is some bijection between them.

26.5 Proof of Lemma 26.1.2
Proof of Lemma 26.1.2. The function tan : (≠fi/2, fi/2) æ R is a bijection
because it has an inverse called arctan. So we have a bijection as follows:

R
≥=

arctan
// (≠fi/2, fi/2).

Now, the operation x ‘æ 1
fi x, otherwise known as scaling by a factor of 1

fi , is
a bijection

(≠fi/2, fi/2)
≥=

x ‘æx/fi
// (≠1/2, 1/2).

2
This would not be true if we declared f(A) to be the number whose ≠nth place is

given by 1 if n œ A, and 0 otherwise. The problem is that the number 1.00000 . . ., given

by A = {0}, would equal the number 0.111 . . ., given by A = N \ {0}.
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(To see this, note there is an inverse called multiplication by fi.)
Finally, the operation of +1

2 gives a bijection3 as follows:

(≠1/2, 1/2)
≥=

x ‘æx+ 1
2

// (0, 1).

A composition of bijections is a bijection; so composing the above functions,
we obtain the desired result.

3
This function has an inverse given by x ‘æ x ≠ 1

2 , for example.


