
Lecture 3

Matrices

3.1 Goals

1. Review summation notation as needed

2. Get used to matrix addition and multiplication

3. Get used to proofs using matrices

3.2 Summation notation review

You’ve probably seen summation notation previously. They typically come
up when performing Riemann sums in Calculus.

Mathematicians use summation notation, or sigma notation to e�ciently
describe the addition of many numbers. I’ve also told you that there are
rings that consist of things that aren’t just numbers—in fact, we will use
summation notation to describe addition in any ring.

Definition 3.2.1. Let a1, . . . , an denote a collection of numbers (or, more
generally, elements of a ring). Then we let

nÿ

k=1
ak

denote the summation a1 + a2 + . . . + ak. In fact, choosing two numbers i
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22 LECTURE 3. MATRICES

and j so that 1 Æ i Æ j Æ k, the notation
jÿ

k=i

ak

denotes the summation ai + ai+1 + . . . + aj≠1 + aj.

Example 3.2.2. Let us denote a collection of numbers as follows:

a1 = 3, a2 = 5, a3 = 5, a4 = 5, a5 = ≠2, a6 = 1
2 , a7 = fi.

Then
7ÿ

k=1
ak = 3 + 5 + 5 + 5 ≠ 2 + 1

2 + fi = fi + 16.5 = fi + 33
2 .

And
6ÿ

k=3
ak = 5 + 5 ≠ 2 + 1

2 = 17
2 .

3.3 Matrices

Recall that an m-by-n matrix is an array of numbers containing m rows and
n columns. Here are some examples:

A
0 1
2 4

B

,

Q

ca
fi ≠3Ô
2 4

1 1

R

db ,

A
5 5 7 ≠3

≠8 5 0 1
2

B

.

The above are 2-by-2, 3-by-2, and 2-by-4 matrices, respectively.

Notation 3.3.1. Let A be an m-by-n matrix. We let Ai,j denote the entry
in the ith row and jth column.

Example 3.3.2. In the matrix

B =

Q

ca
≠2

Ô
2

1 fi
2
3 3

R

db

we see that

B1,1 = ≠2, B1,2 =
Ô

2, B2,1 = 1, B2,2 = fi, B3,1 = 2
3 , B3,2 = 3.
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Definition 3.3.3 (Equality of matrices). We say that two m-by-n matrices
A and B are equal, and write A = B, if their entries agree. That is, we write
A = B if for every i and j with 1 Æ i Æ m and 1 Æ j Æ n, we have

Ai,j = Bi,j.

If you have an m-by-n matrix A, and a k-by-l matrix B, you can multiply
the two matrices to obtain a new matrix AB if n = k.
Definition 3.3.4 (Matrix multiplication). Let A be an m-by-n matrix and
B a n-by-l matrix. (Note the number of columns of A equals the number of
rows of B.) define the product AB to be an m-by-l matrix, whose entries
are given by

(AB)i,j =
nÿ

k=1
Ai,kBk,j.

Example 3.3.5.

Q

ca
1 2
3 4
5 6

R

db ·
A

0 ≠1 ≠2 ≠3
0 3 2 1

B

=

Q

ca
0 5 2 ≠1
0 9 2 ≠5
0 13 2 ≠9

R

db .

For example, the (1, 4) entry of the result is obtained by the summation

(1)(≠3) + 2(1) = ≠3 + 2 = ≠1.

If you like, this is the dot product between the first row of the left matrix,
and the 4th column of the second matrix.
Definition 3.3.6 (Matrix addition). Let A and B be two m-by-n matrices.
Then their sum is defined as another m-by-n matrix whose (i, j)th entry is
given by

(A + B)i,j = Ai,j + Bi,j.

Example 3.3.7.
A

1 2 3
4 5 6

B

+
A

fi 2 3
6 7 1

B

=
A

1 + fi 4 6
10 12 7

B

Notation 3.3.8. Fix an integer n Ø 1. We let

Mn(R)

denote the set of all n-by-n matrices whose entries are real numbers.
More generally, let R be any ring. Then Mn(R)—the set of all matrices

with entries in R—is a ring.
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Remark 3.3.9. So if A œ Mn(R), then for any i, j with 1 Æ i Æ n and
1 Æ j Æ n, we have that Ai,j œ R.

3.3.1 Example of a proof involving matrices

Let’s see an example of a proof utilizing matrices.

Definition 3.3.10. Fix an integer n Ø 1 and let A be an n-by-n matrix. We
say that A is lower-triangular if i > j =∆ Ai,j = 0.

Proposition 3.3.11. If A and B are both lower-triangular, then AB is also
lower-triangular.

Proof. We must show that if i > j, then (AB)i,j = 0. So let us suppose that
i > j. We of course have

(AB)i,j =
nÿ

k=1
Ai,kBk,j Definition of matrix multiplication.

We can split up this summation as follows:

nÿ

k=1
Ai,kBk,j =

Q

a
nÿ

k=j+1
Ai,kBk,j

R

b +
Q

a
jÿ

k=1
Ai,kBk,j

R

b

=
Q

a
nÿ

k=j+1
Ai,k · 0

R

b +
Q

a
jÿ

k=1
0 · Bk,j

R

b

= 0 + 0. (3.3.1.1)

Note that when j +1 Æ k Æ n, we know k > j, so Bk,j = 0 by the assumption
that B is lower-triangular. Likewise, when 1 Æ k Æ j, we know that i > k
because we are computing (AB)i,j where i > j; so Ai,k = 0 in this range of
k.

3.4 Exercises on matrix addition and multi-

plication

Exercise 3.4.1. Compute the following operations. If the operation do not
make sense as stated, answer “does not make sense.”
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(a)

Q

ca
3 5 6
7 8 9
1 1 1

R

db +

Q

ca
3 5 6
7 8 9
1 1 1

R

db

(b)

Q

ca
3 5 6
7 8 9
1 1 1

R

db

Q

ca
3 5 6
7 8 9
1 1 1

R

db

(c)

Q

ca
2 0 0
0 1 0
0 0 3

R

db

Q

ca
3 5 6
7 8 9
1 1 1

R

db

(d)

Q

ca
3 5 6
7 8 9
1 1 1

R

db

Q

ca
2 0 0
0 1 0
0 0 3

R

db

(e)

Q

ca
0 0 0
0 1 0
0 0 0

R

db

Q

ca
2 0 0
0 1 0
0 0 3

R

db

Exercise 3.4.2. Compute the following operations. If the operation do not
make sense as stated, answer “does not make sense.”

(a)

Q

ca
0 0 1
0 0 0
0 0 0

R

db

Q

ca
0 0 1
0 0 0
0 0 0

R

db

(b)

Q

ca
0 0 3
0 0 0
0 0 0

R

db

Q

ca
0 0 1
0 0 0
0 0 0

R

db

(c)

Q

ca
0 0 3
0 0 0
0 0 0

R

db +

Q

ca
0 0 1
0 0 0
0 0 0

R

db

(d)

Q

ca
0 0 1
0 0 0
0 0 0

R

db +

Q

ca
0 0 3
0 0 0
0 0 0

R

db

(e)

Q

ca
0 0 3
0 0 2
0 0 0

R

db

A
3 5 6
2 4 2

B
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Exercise 3.4.3. Compute the following operations. If the operation do not
make sense as stated, answer “does not make sense.”

(a)
A

3 5 6
2 4 2

B Q

ca
0 0 3
0 0 2
0 0 0

R

db

(b)
A

fi a b
1 3 2

B A
3 5 6
2 4 2

B

(c)
A

3 5 6
2 4 2

B A
fi a b
1 3 2

B

(d)
A

2 2
3 3

B A
0 1
0 3

B

(e)
A

0 1
0 3

B A
2 2
3 3

B

Exercise 3.4.4. Compute the following operations. If the operation do not
make sense as stated, answer “does not make sense.”

(a)
A

0 1
0 3

B

+
A

2 2
3 3

B

(b)
A

2 2
3 3

B

+
A

0 1
0 3

B

(c)

Q

ccca

0 ≠1
0.2 3
4 5
6 7

R

dddb

A
2 1
3 3

B

(d)
A

2 1
3 3

B
Q

ccca

0 ≠1
0.2 3
4 5
6 7

R

dddb

(e)
A

2 1
4 3

B A
1 1
2 2

B
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Exercise 3.4.5. Compute the following operations. If the operation does
not make sense as stated, answer “does not make sense.”

(a)
A

2 1
4 3

B Q

ca
0 0 3
0 0 2
0 0 0

R

db

(b)

Q

ca
0 0 3
0 0 2
0 0 0

R

db

A
2 1
4 3

B

(c)

Q

ca
0 0 3
0 0 2
0 0 0

R

db +
A

2 1
4 3

B

(d)
A

2 1
4 3

B

+

Q

ca
0 0 3
0 0 2
0 0 0

R

db

Exercise 3.4.6. Fix an integer n Ø 1 and a real number ⁄.1 Suppose that
A is an n-by-n matrix with entries as follows:

Ai,j =

Y
]

[
0 i ”= j

⁄ i = j.

Such a matrix is called a diagonal matrix.

(a) Show that if B is an arbitrary n-by-n matrix, then AB = BA.

(b) How does the (i, j)th entry of AB compare to the (i, j)th entry of B?

Exercise 3.4.7. Let A be an n-by-n matrix. A is called upper-triangular if
i > j =∆ Ai,j = 0.

(a) Show that if A and B are two upper-triangular matrices, then so is AB.

(b) Show that if A and B are two upper-triangular matrices, then so is A+B.

Exercise 3.4.8. Let A be an n-by-n matrix. The transpose of A is a matrix
whose (i, j)th entry is the (j, i)th entry of A. We let AT denote the transpose.
Show that (AB)T = BT AT .

1This is the Greek letter lambda. It is pronounced “lam-da.”
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3.5 The ring of n-by-n matrices

Fix n Ø 1. Given two n-by-n matrices, we know how to add them (Defi-
nition 3.3.6) and we know how to multiply them (Definition 3.3.4). So it’s
beginning to look like the set of all n-by-n-matrices might form a ring!

We have the following, which we’ll call a theorem mainly because it is
rather tedious to dot all the is and cross all the ts.

Theorem 3.5.1. Fix a ring R and any integer n Ø 1. Then Mn(R), equipped
with the addition and multiplication of matrices, is a ring.

The proof of this theorem is rather tedious, so you should only read the
parts you care about. Even if you don’t read the proof, you should just know
that the collection of all n-by-n matrices, with entries in a given ring R,
forms a ring itself.

Proof that addition is associative. We have that

(A + (B + C))i,j = Ai,j + (B + C)i,j = Ai,j + (Bi,j + Ci,j)
= (Ai,j + Bi,j) + Ci,j

= (A + B)i,j + Ci,j

= ((A + B) + C)i,j

where every equality except the second equality is by definition of matrix
addition. The second equality uses the fact that R is a ring (so that addition
in R is associative).

We see that the entries of A + (B + C) and (A + B) + C agree, so the
two matrices are equal.

Proof that addition is commutative. We have that

(A + B)i,j = Ai,j + Bi,j

= Bi,j + Ai,j

= (B + A)i,j.

where the first and third equality follow from the definition of matrix addi-
tion, and the second equality is by the fact that R is a ring (so that addition
is commutative). This shows A + B = B + A.
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Proof that there is an additive identity. Let 0 be the additive identity of the
ring R, and let 0 be the n-by-n matrix all of whose entries are 0. Then

(A + 0)i,j = Ai,j + 0i,j = Ai,j + 0 = Ai,j.

Thus, A + 0 and A are the same matrix.

Proof that additive inverses exist. Given an n-by-n matrix A, let ≠A denote
the matrix whose (i, j)th entry is given by ≠(Ai,j). (That is, by the additive
inverse of Ai,j in the ring R.) Then

(A + (≠A))i,j = Ai,j + (≠A)i,j = Ai,j + ≠(Ai,j) = 0

Hence A + ≠A = 0.

Proof that multiplication is associative. We have

(A(BC))i,j =
nÿ

k=1
Ai,k(BC)k,j Definition of matrix multiplication

=
nÿ

k=1
Ai,k

A
nÿ

l=1
Bk,lCl,j

B

Definition of matrix multiplication

=
nÿ

k=1

nÿ

l=1
Ai,k(Bk,lCl,j) Distributivity in R

=
nÿ

k=1

nÿ

l=1
(Ai,kBk,l)Cl,j Associativity of multiplication in R

=
nÿ

l=1

nÿ

k=1
(Ai,kBk,l)Cl,j Addition is commutative

=
nÿ

l=1

A
nÿ

k=1
Ai,kBk,l

B

Cl,j Distributivity

=
nÿ

l=1
(AB)i,lCl,j Definition of matrix multiplication

= ((AB)C)i,j Definition of matrix multiplication.

This shows A(BC) = (AB)C.

Proof that there is a multiplicative identity. Let 1 be the multiplicative iden-
tity of R, and 0 the additive identity. Let I denote the n-by-n matrix for
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which

Ii,j =

Y
]

[
0 i ”= j

1 i = j.

We claim that I is a multiplicative identity in Mn(R). To see this, note

(AI)i,j =
nÿ

k=1
Ai,kIk,j

= Ai,jIj,j +
ÿ

k ”=j

Ai,k0

= Ai,j.

This shows AI = A. Similar work shows IA = A.

Proof that multiplication is distributive.

(A(B + C))i,j =
nÿ

k=1
Ai,k(B + C)k,j

=
nÿ

k=1
Ai,k(Bk,j + Ck,j)

=
nÿ

k=1
(Ai,kBk,j + Ai,kCk,j)

=
nÿ

k=1
Ai,kBk,j +

nÿ

k=1
Ai,kCk,j

= (AB)i,j + (AC)i,j.

This shows that A(B + C) = AB + AC. Note that the third equality uses
that R is a ring (hence that multiplication distributes over addition in R).
The fourth equality is parsing summation notation, and all other equalities
are just definitions of matrix operations.

A similar proof shows that (B + C)A = BA + CA.

3.6 Some remarks

It turns out that matrices are by far among the most useful tools in modern
mathematics. It’s useful not just in pure mathematics, but also in many fields
of applied mathematics. The person who came up with the word “matrix”
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is James Joseph Sylvester—this happened back in the 1850’s. But matrices
in some form were used by Babylonians, and also during the Han dynasty of
China, sometime between 300 BCE and 200 CE.

(By the way, a good way to test for whether an idea is important, or
natural, is to see if people in far-away places came up with the idea indepen-
dently.)

All the proofs you performed in the exercises are valid over any ring. You
may have had in mind real-valued matrices, but in fact there is something
very “universal” about the proofs, in that they are true not just in Mn(R)
but also in Mn(R) for R an arbitrary ring.
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3.7 Extra credit: Centers

Let R be a ring. The center of a ring is the set of all elements a œ R so that,
for every b œ R, ab = ba. We write Z(R) for the center of a ring.

1. Prove that Z(R) is a ring.

2. Tell me what Z(M2(R)) is.


