
Lecture 4

Acting on R2

4.1 Goals

(a) Understanding we can represent elements of the x-y plane as column
vectors.

(b) Seeing that each 2-by-2 matrix acts on R2

(c) Understanding why linearity allows us to understand matrices through
their columns

(d) Practicing how to visualize a 2-by-2 matrix’s action by using images of
squares

4.2 R2

Recall that R2 is the Euclidean plane. As a set, it consists of all ordered
pairs of real numbers. For example, the following are all elements of R2:

(0, 0) (fi, ≠1) (
Ô

2, 5) (0, 7) (≠2, ≠2).

You may be used to writing elements of R2 as (x, y). You are also probably
used to drawing the set R2 as the x-y plane. In this class, and in most
advanced math classes, we’ll often say R2 (this is pronounced “R2,” as in the
Star Wars droid R2-D2) instead of “the xy-plane.”
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36 LECTURE 4. ACTING ON R2

Remark 4.2.1. More generally, if X and Y are sets, one can define the
direct product, or Cartesian product of X and Y as the set whose elements
are exactly ordered pairs (x, y) with x œ X and Y œ Y . The notation
X ◊ Y is often used for this direct product. (This is because—if X and Y
are finite sets—then the number of elements of X ◊ Y is the product of the
number of elements in X and in Y . Te multiplicative notation invokes this
phenomenon.) When X = Y , we often write X2.

Indeed, R2 = R ◊ R.

4.2.1 Elements of R2
as column vector

To specify an element of R2 is to specify two real numbers. There is another
mathematical object specified by two real numbers: a 2-by-1 matrix. Using
this fact, we will often choose to write an element of R2 (that is, a point on
the x-y plane) as such a matrix.

Example 4.2.2. The point (7, 3) in the x-y plane can be written as the
matrix A

7
3

B

.

We will call such vertical matrices column vectors. Writing elements of
R2 as matrices, or as column vectors, is quite convenient: It becomes clear
that matrices can act on elements of R2.

Notation 4.2.3. We will often denote a column vector by the bolded letter
x. When you hand-write this notation, you may write it as x or as x̨. We
will denote the entries of x as x1, x2.

Example 4.2.4. If x œ R2, we will write

x =
A

x1
x2

B

.

Remark 4.2.5. You are most likely used to write (x, y) for a point on the
x-y plane. But letters are precious, so we’ll often choose instead to write
(x1, x2) for an element of the x-y plane. So, confusingly, each of the following
is a way to indicate an element of R2:

(x, y)
A

x
y

B

(x1, x2)
A

x1
x2

B

x.
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4.2.2 Drawing points on R2
as vectors

You are most likely used to drawing R2, and a point in R2, as follows:

x1

x2

(3, ≠2)

For various reasons, we will instead use the convention of drawing an arrow
from the origin to the point we want to indicate. When we do this, we will
think of this arrow as a visual depiction of a column vector. So the point
(3, ≠2) above will be drawn as follows when thought of as a vector:

x1

x2

A
3

≠2

B
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Here are some more drawings of vectors:

x1

x2 A
1
4

B

x1

x2

A
≠2
≠2

B x1

x2A
0
4

B

We may often be lazy and delete the x1, x2 labels from our axes, along with
the arrowheads of the axes. So the above pictures may equally well be drawn
as follows:

A
1
4

B

A
≠2
≠2

B

A
0
4

B

4.2.3 Adding and scaling column vectors

Given two column vectors, you can add them:

A
x1
x2

B

+
A

y1
y2

B

=
A

x1 + y1
x2 + y2

B

.

(This is usual matrix addition.) We can visualize this as well, by putting
one vector’s tail at the head of another. (The “head-to-tail” method.) The
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picture below shows how
A

3
0

B

+
A

1
1

B

=
A

4
1

B

.

A
3
0

B

A
1
1

B

A
4
1

B
A

3
0

B

A
1
1

B

A
4
1

B

Of course, as shown on the right, we could obtain the same vector by first

drawing the
A

1
1

B

vector, then adding on the
A

3
0

B

vector. This is because ad-

dition of matrices (and hence column vectors) is commutative. So sometimes,
people also draw a parallelogram to indicate the vector sum:

You can also scale a column vector. More precisely, fix a real number ⁄ and

a column vector x =
A

x1
x2

B

. Then we define

⁄

A
x1
x2

B

:=
A

⁄x1
⁄x2

B

.

In other words, we multiply all the coordinates of x by ⁄.
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This is called scaling for a good reason. Multiplying a vector by ⁄ “scales”
the vector by a factor of ⁄.

x1

x2

x

x1

x2

2x

4.3 2-by-2 matrices act on R2

We saw in last lecture that for any integer n Ø 1 and for any ring R, Mn(R)
is also a ring. From hereon, we will focus on the case n = 2 and R = R.
(That is, the case of 2-by-2 matrices whose entries are real numbers.)

Let’s fix a 2-by-2 matrix with real entries. We’ll call the matrix A and
write its entries as

A =
A

a b
c d

B

.

Then A determines a function from R2 to R2 as follows:

x ‘æ Ax

where Ax denotes matrix multiplication.

Notation 4.3.1. The arrow ‘æ is an arrow with a vertical tail. It should
be read as “maps to.” This arrow is used to describe a function’s input and
output. The tail of the arrow is closest to the input, while the head of the
arrow is closest to the output. Hence, the notation x ‘æ Ax describes a
function which, given an input called x, outputs Ax.

We often say that x is “sent to” Ax.

Explicitly, given an element of R2, which we think of as a column vector
x, we obtain another element of R2 by multiplying x on the left with A. If
we give x coordinates x1, x2, this can be explicitly written out:

A
x1
x2

B

‘æ
A

a b
c d

B A
x1
x2

B

=
A

ax1 + bx2
cx1 + dx2

B

.
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Example 4.3.2. Let

A =
A

1 1
≠1 2

B

.

Then the column vector
A

1
0

B

is sent to the column vector
A

1
≠1

B

, as shown

by the following computation:

A

A
1
0

B

=
A

1 1
≠1 2

B A
1
0

B

=
A

1 · 1 + 1 · 0
≠1 · 1 + 2 · 0

B

=
A

1
≠1

B

Once we perform this computation, we can try to graphically represent this
input-output relation as follows:

A
1
0

B

A
1

≠1

B

(The matrix A sends the vector on the left to the vector on the right.) Like-

wise,
A

2
1

B

is sent to
A

3
0

B

, as shown by the following computation:

A

A
2
1

B

=
A

1 1
≠1 2

B A
2
1

B

=
A

1 · 2 + 1 · 1
≠1 · 2 + 2 · 1

B

=
A

3
0

B

I’ll leave it to you to check that
A

0
1

B

is sent to
A

1
2

B

. We can then draw the
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e�ect of A as follows:

A
1
0

B

A
0
1

B

A
1

≠1

B

A
1
2

B

(A takes the vectors on the left to the vectors on the right.)

4.4 Understanding how a matrix acts on R2

Let A be a matrix.

Proposition 4.4.1 (Matrices are linear transformations). Let A be a 2-by-2
matrix and fix x, y œ R2. Further, let ⁄ be a real number. Then

A(⁄x) = ⁄A(x) and A(x + y) = Ax + Ay.

(Note that x and y refer to two elements of R2—in particular, y is not a
coordinate, but a column vector.)

We’ll prove the proposition shortly, but let’s talk about the upshot. The
proposition tells us that we can understand what a matrix does on all of R2

fairly straightforwardly. After all, any element of R2 is of the form

x =
A

x1
x2

B

= x1

A
1
0

B

+ x2

A
0
1

B

.

So the proposition tells us that

Ax = x1A

A
1
0

B

+ x2A

A
0
1

B

.
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In other words, if you understand what A does to
A

1
0

B

and to
A

0
1

B

, you

understand what A does to all other vectors.
Example 4.4.2. Let

A =
A

1 1
≠1 2

B

.

Let’s try to undersatnd what A does to the vector
A

3
1

B

. Well, we can write
A

3
1

B

as 3
A

1
0

B

+
A

0
1

B

. See the drawing:

3
A

1
0

B

A
0
1

B A
3
1

B

3
A

1
≠1

B

A
1
2

B

As you know, the vectors
A

1
0

B

and
A

0
1

B

generate a square grid in R2.

When we apply a matrix A, the vectors A

A
1
0

B

and A

A
0
1

B

often generate a

new grid. This is a very good way to visualize what A is doing to R2:
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The above picture shows how the matrix A, when inputting the blue grid
on the left, outputs the blue grid on the right. (The standard square grid
is shown also in gray, on both images.) As you can see, A not only turns
squares into tilted parallelograms, it also increases the area of each square in
the grid considerably.

Proof of Proposition 4.4.1. Let A =
A

a b
c d

B

and x =
A

x1
x2

B

.

A(⁄x) =
A

a b
c d

B

·
A

⁄x1
⁄x2

B

=
A

a · ⁄x1 + b · ⁄x2
c · ⁄x1 + d · ⁄x2

B

=
A

⁄(ax1 + bx2)
⁄(cx1 + dx2)

B

= ⁄

A
ax1 + bx2
cx1 + dx2

B

= ⁄Ax.

Letting y =
A

y1
y2

B

we have

A(x + y) =
A

a b
c d

B

·
A

x1 + y1
x2 + y2

B

=
A

a(x1 + y1) + b(x2 + y2)
c(x1 + y1) + d(x2 + y2)

B

=
A

(ax1 + bx2) + (ay1 + by2)
(cx1 + dx2) + (cy1 + dy2)

B

=
A

ax1 + bx2
cx1 + dx2

B

+
A

ay1 + by2
cy1 + dy2

B

= Ax + Ay.
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4.5 Exercises

Exercise 4.5.1. Choose any real number ◊. Convince yourself that
A

cos ◊ ≠ sin ◊
sin ◊ cos ◊

B

is a matrix that rotates R2 by ◊ radians about the origin, counterclockwise.
How would you explain to a friend that this is true?

Exercise 4.5.2. Consider the square formed by the vertices (0, 0), (1, 0) ,
(0, 1) and (1, 1) in R2. For each of the following matrices, draw the image of
this square under A.

(a)
A

1 0
0 1

B

(b)
A

1 1
0 1

B

(c)
A

1 0
1 1

B

(d)
A

1 2
0 1

B

Exercise 4.5.3. Consider the square formed by the vertices (0, 0), (1, 0) ,
(0, 1) and (1, 1) in R2. For each of the following matrices, draw the image of
this square under A.

(a)
A

2 0
0 2

B

(b)
A

3 0
0 3

B

(c)
A

≠1 0
0 1

B

(d)
A

≠1 0
0 ≠1

B
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Exercise 4.5.4. Consider the square formed by the vertices (0, 0), (1, 0) ,
(0, 1) and (1, 1) in R2. For each of the following matrices, draw the image of
this square under A.

(a)
A

1 1
1 1

B

(b)
A

1 0
0 0

B

(c)
A

0 0
0 1

B

(d)
A

1 1
2 2

B

Exercise 4.5.5. Consider the matrix

A =
A

a b
c d

B

.

Prove that the square formed by the vertices (0, 0), (1, 0) , (0, 1) and (1, 1)
is sent by A to a parallelogram of area ad ≠ bc.

Exercise 4.5.6. Consider the matrix

I =
A

1 0
0 1

B

.

Let x œ R2. Show that Ix = x.

Exercise 4.5.7. Consider the matrix

A =
A

a b
c d

B

.

If ad ≠ bc ”= 0, consider further the matrix

B =
A

d
ad≠bc

≠b
ad≠bc

≠c
ad≠bc

a
ad≠bc

B

.

Prove that AB = I and BA = I. For this reason, we will often write B as
A≠1.
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Exercise 4.5.8. A line in R2 is a subset L µ R2 for which the following
holds: There exists x0 œ R2 and v œ R2 so that

L = {x0 + tv, t œ R.}

Let L be a line, and let

A(L) = {y œ R2 | y = Ax for some x œ L}

be the image of L under A. Prove that A(L) is also a line.
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4.6 Extra Credit: Fibonacci numbers

Consider the matrix A =
A

1 1
1 0

B

.

Let x1 =
A

1
0

B

and define inductively

xn = Axn≠1.

For example,

x2 = Ax1 =
A

1 1
1 0

B A
1
0

B

=
A

1
1

B

and
x3 = Ax2 =

A
1 1
1 0

B A
1
1

B

=
A

2
1

B

.

(a) Let Fn be the nth Fibonacci number. (I will use the convention that the
Fibonacci sequence begins 0, 1, 1, 2, 3, . . ., so F1 = 0, F2 = 1, et cetera.)
Prove that

xn =
A

Fn+1
Fn.

B

(b) Consider the two vectors

s1 =
A

1 +
Ô

5
2

B

, s2 =
A

1 ≠
Ô

5
2

B

.

Prove that
As1 = 1 +

Ô
5

2 s1, As2 = 1 ≠
Ô

5
2 s2

(c) Show that there exist two real numbers a1, a2 so that
x1 = a1s1 + a2s2.

(d) More generally, prove that

xn+1 = a1

A
1 +

Ô
5

2

Bn

s1 + a2

A
1 ≠

Ô
5

2

Bn

s2.

(e) By noting that |1≠
Ô

5
2 | < 1, show that xn becomes closer and closer to

the line spanned by s1 as n æ Œ. Conclude that, as n goes to infinity,
the ratio of consecutive Fibonnaci numbers approaches the golden ratio.


